Millions of patients worldwide remain inadequately treated for bone defects related to factors such as disease or trauma. The drawbacks of metallic implant and autograft/allograft use have steered therapeutic approaches towards tissue engineering solutions involving tissue regeneration scaffolds. This study proposes a composite scaffold with properties tailored to address the macro- and microenvironmental conditions deemed necessary for successful regeneration of bone in defect areas. The biodegradable scaffold composed of porous beta-tricalcium phosphate particles and collagen type I fibers is prepared from a mixture of collagen type-I and β-tricalcium phosphate (β-TCP) particles via lyophilization, followed by dehydrothermal (DHT) processing. The effects of both sterilization via gamma radiation and the use of DHT processing to achieve cross-linking were investigated. The impact of the chosen fabrication methods on scaffold microstructure and β-TCP particle-collagen fiber combinations were analyzed using X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and microcomputerized tomography (µ-CT). Electron spinning resonance (ESR) analysis was used to investigate free radicals formation following sterilization. Results revealed that the highly porous (65% porosity at an average of 100 µm pore size), mechanically adequate, and biocompatible scaffolds can be utilized for bone defect repairs.
BackgroundMineralization in bone tissue involves stepwise cell-cell and cell-ECM interaction. Regulation of osteoblast culture microenvironments can tailor osteoblast proliferation and mineralization rate, and the quality and/or quantity of the final calcified tissue. An in vitro model to investigate the influencing factors is highly required.MethodsWe developed a facile in vitro model in which an osteoblast cell line and aggregate culture (through the modification of culture well surfaces) were used to mimic intramembranous bone mineralization. The effect of culture environments including culture duration (up to 72 hours for rapid mineralization study) and aggregates size (monolayer culture as control) on mineralization rate and mineral quantity/quality were examined by osteogenic gene expression (PCR) and mineral markers (histological staining, SEM-EDX and micro-CT).ResultsTwo size aggregates (on average, large aggregates were 745 μm and small 79 μm) were obtained by the facile technique with high yield. Cells in aggregate culture generated visible and quantifiable mineralized matrix within 24 hours, whereas cells in monolayer failed to do so by 72 hours. The gene expression of important ECM molecules for bone formation including collagen type I, alkaline phosphatase, osteopontin and osteocalcin, varied temporally, differed between monolayer and aggregate cultures, and depended on aggregate size. Monolayer specimens stayed in a proliferation phase for the first 24 hours, and remained in matrix synthesis up to 72 hours; whereas the small aggregates were in the maturation phase for the first 24 and 48 hour cultures and then jumped to a mineralization phase at 72 hours. Large aggregates were in a mineralization phase at all these three time points and produced 36% larger bone nodules with a higher calcium content than those in the small aggregates after just 72 hours in culture.ConclusionsThis study confirms that aggregate culture is sufficient to induce rapid mineralization and that aggregate size determines the mineralization rate. Mineral content depended on aggregate size and culture duration. Thus, our culture system may provide a good model to study regulation factors at different development phases of the osteoblastic lineage.Electronic supplementary materialThe online version of this article (doi:10.1186/1475-925X-13-136) contains supplementary material, which is available to authorized users.
To mimic natural bone, a tissue engineering scaffold was developed that combines inorganic and organic components of natural bone, its pore diameter, and its interconnected structure. Collagen was coated onto a PLLA/PCL scaffold and hydroxyapatite particles were delivered throughout the polymer matrix much more easily than with other techniques thanks to the porosity‐forming method of combining two porogens, namely, salt leaching and supercritical CO2 extraction. Compared with other coating techniques, this procedure can be performed readily and homogeneous 3D hydroxyapatite coating was achieved.
BMSCs delivered with a collagen/β-TCP linked scaffold can provide improved new bone formation that is comparable with autogenous bone block graft through vertical guided bone regeneration technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.