Water pollution is caused by multiple factors, such as industrial dye wastewater. Dye-contaminated water can be treated using hydrogels as adsorbent materials. Recently, composite hydrogels containing metal oxide nanoparticles (MONPs) have been used extensively in wastewater remediation. In this study, we use a statistical and artificial intelligence method, based on principal component analysis (PCA) with different applied parameters, to evaluate the adsorption efficiency of 27 different MONP composite hydrogels for wastewater dye treatment. PCA showed that the hydrogel composites CTS@Fe3O4, PAAm/TiO2, and PEGDMA-rGO/Fe3O4@cellulose should be used in situations involving high pH, time to reach equilibrium, and adsorption capacity. However, as the composites PAAm-co-AAc/TiO2, PVPA/Fe3O4@SiO2, PMOA/ATP/Fe3O4, and PVPA/Fe3O4@SiO2, are preferred when all physical and chemical properties investigated have low magnitudes. To conclude, PCA is a strong method for highlighting the essential factors affecting hydrogel composite selection for dye-contaminated water treatment.
Water scarcity is a growing global issue, particularly in areas with limited freshwater sources, urging for sustainable water management practices to insure equitable access for all people. One way to address this problem is to implement advanced methods for treating existing contaminated water to offer more clean water. Adsorption through membranes technology is an important water treatment technique, and nanocellulose (NC)-, chitosan (CS)-, and graphene (G)- based aerogels are considered good adsorbents. To estimate the efficiency of dye removal for the mentioned aerogels, we intend to use an unsupervised machine learning approach known as “Principal Component Analysis”. PCA showed that the chitosan-based ones have the lowest regeneration efficiencies, along with a moderate number of regenerations. NC2, NC9, and G5 are preferred where there is high adsorption energy to the membrane, and high porosities could be tolerated, but this allows lower removal efficiencies of dye contaminants. NC3, NC5, NC6, and NC11 have high removal efficiencies even with low porosities and surface area. In brief, PCA presents a powerful tool to unravel the efficiency of aerogels towards dye removal. Hence, several conditions need to be considered when employing or even manufacturing the investigated aerogels.
Water scarcity is a global problem affecting millions of people. It can lead to severe economic, social, and environmental consequences. It can also have several impacts on agriculture, industry, and households, leading to a decrease in human quality of life. To address water scarcity, governments, communities, and individuals must work in synergy for the sake of water resources conservation and the implementation of sustainable water management practices. Following this urge, the enhancement of water treatment processes and the development of novel ones is a must. Here, we have investigated the potential of the applicability of “Green Aerogels” in water treatment’s ion removal section. Three families of aerogels originating from nanocellulose (NC), chitosan (CS), and graphene (G) are investigated. In order to reveal the difference between aerogel samples in-hand, a “Principal Component Analysis” (PCA) has been performed on the physical/chemical properties of aerogels, from one side, and the adsorption features, from another side. Several approaches and data pre-treatments have been considered to overcome any bias of the statistical method. Following the different followed approaches, the aerogel samples were located in the center of the biplot and were surrounded by different physical/chemical and adsorption properties. This would probably indicate a similar efficiency in the ion removal of the aerogels in-hand, whether they were nanocellulose-based, chitosan-based, or even graphene-based. In brief, PCA has shown a similar efficiency of all the investigated aerogels towards ion removal. The advantage of this method is its capacity to engage and seek similarities/dissimilarities between multiple factors, with the elimination of the shortcomings for the tedious and time-consuming bidimensional data visualization.
Nowadays, acquiring a water supply for urban and industrial uses is one of the greatest challenges facing humanity for ensuring sustainability. Membrane technology has been considered cost-effective, encompasses lower energy requirements, and at the same time, offers acceptable performance. Electrospun nanofibrous membranes (ENMs) are considered a novel and promising strategy for the production of membranes that could be applied in several treatment processes, especially desalination and ion removal. In this study, we apply an unsupervised machine-learning strategy, the so-called principal component analysis (PCA), for the purpose of seeking discrepancies and similarities between different ENMs. The main purpose was to investigate the influence of membrane fabrication conditions, characteristics, and process conditions in order to seek the relevance of the application of different electrospun nanofibrous membranes (ENMs). Membranes were majorly classified into single polymers/layers, from one side, and dual multiple layer ENMs, from another side. For both classes, variables related to membrane fabrication conditions were not separated from membrane characterization variables. This reveals that membranes’ characteristics not only depend on the chemical composition, but also on the fabrication conditions. On the other hand, the process conditions of ENM fabrication showed an extensive effect on membranes’ performance.
Artifi cial intelligence technologies have been extensively used to decipher water quality and characterization. Fewer studies have employed these techniques in the purpose of optimizing a water treatment process. Here, we apply unsupervised machine learning techniques for the optimization of the choice of membranes, following the different constraints and conditions encountered. The adopted data analysis techniques are the Principal Component Analysis (PCA) and the Hierarchical Cluster Analysis (HCA). Both methods showed their capacity to reveal resemblance and discrepancies between different membrane types and based on several properties. PCA is more appreciated than HCA as it removes any intercorrelation between factors and it helps in a better understanding of different trends of the dataset by establishing a Scores-Factors relation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.