We provide an open access multimodal brain-imaging dataset of simultaneous electroencephalography (EEG) and near-infrared spectroscopy (NIRS) recordings. Twenty-six healthy participants performed three cognitive tasks: 1) n-back (0-, 2- and 3-back), 2) discrimination/selection response task (DSR) and 3) word generation (WG) tasks. The data provided includes: 1) measured data, 2) demographic data, and 3) basic analysis results. For n-back (dataset A) and DSR tasks (dataset B), event-related potential (ERP) analysis was performed, and spatiotemporal characteristics and classification results for ‘target’ versus ‘non-target’ (dataset A) and symbol ‘O’ versus symbol ‘X’ (dataset B) are provided. Time-frequency analysis was performed to show the EEG spectral power to differentiate the task-relevant activations. Spatiotemporal characteristics of hemodynamic responses are also shown. For the WG task (dataset C), the EEG spectral power and spatiotemporal characteristics of hemodynamic responses are analyzed, and the potential merit of hybrid EEG-NIRS BCIs was validated with respect to classification accuracy. We expect that the dataset provided will facilitate performance evaluation and comparison of many neuroimaging analysis techniques.
Neurorehabilitation for stroke is important for upper limb motor recovery. Conventional rehabilitation such as occupational therapy has been used, but novel technologies are expected to open new opportunities for better recovery. Virtual reality (VR) is a technology with a set of informatics that provides interactive environments to patients. VR can enhance neuroplasticity and recovery after a stroke by providing more intensive, repetitive, and engaging training due to several advantages, including: (1) tasks with various difficulty levels for rehabilitation, (2) augmented real-time feedback, (3) more immersive and engaging experiences, (4) more standardized rehabilitation, and (5) safe simulation of real-world activities of daily living. In this comprehensive narrative review of the application of VR in motor rehabilitation after stroke, mainly for the upper limbs, we cover: (1) the technologies used in VR rehabilitation, including sensors; (2) the clinical application of and evidence for VR in stroke rehabilitation; and (3) considerations for VR application in stroke rehabilitation. Meta-analyses for upper limb VR rehabilitation after stroke were identified by an online search of Ovid-MEDLINE, Ovid-EMBASE, the Cochrane Library, and KoreaMed. We expect that this review will provide insights into successful clinical applications or trials of VR for motor rehabilitation after stroke.
A number of recent studies have demonstrated that near-infrared spectroscopy (NIRS) is a promisingneuroimaging modality for brain-computer interfaces (BCIs). So far, most NIRS-based BCI studies have focusedon enhancing the accuracy of the classification of different mental tasks. In the present study, we evaluated theperformances of a variety of mental task combinations in order to determine the mental task pairs that are bestsuited for customized NIRS-based BCIs. To this end, we recorded event-related hemodynamic responses whileseven participants performed eight different mental tasks. Classification accuracies were then estimated for allpossible pairs of the eight mental tasks (8C2 = 28). Based on this analysis, mental task combinations with relatively high classification accuracies frequently included the following three mental tasks: “mental multiplication,” “mental rotation,” and “right-hand motor imagery.” Specifically, mental task combinations consisting of two of these three mental tasks showed the highest mean classification accuracies. It is expected that our results will be a useful reference to reduce the time needed for preliminary tests when discovering individual-specific mental task combinations.
There are some practical factors, such as arm position change and donning/doffing, which prevent robust myoelectric control. The objective of this study is to precisely characterize the impacts of the two representative factors on myoelectric controllability in practical control situations, thereby providing useful references that can be potentially used to find better solutions for clinically reliable myoelectric control. To this end, a real-time target acquisition task was performed by fourteen subjects including one individual with congenital upper-limb deficiency, where the impacts of arm position change, donning/doffing and a combination of both factors on control performance was systematically evaluated. The changes in online performance were examined with seven different performance metrics to comprehensively evaluate various aspects of myoelectric controllability. As a result, arm position change significantly affects offline prediction accuracy, but not online control performance due to real-time feedback, thereby showing no significant correlation between offline and online performance. Donning/doffing was still problematic in online control conditions. It was further observed that no benefit was attained when using a control model trained with multiple position data in terms of arm position change, and the degree of electrode shift caused by donning/doffing was not severely associated with the degree of performance loss under practical conditions (around 1 cm electrode shift). Since this study is the first to concurrently investigate the impacts of arm position change and donning/doffing in practical myoelectric control situations, all findings of this study provide new insights into robust myoelectric control with respect to arm position change and donning/doffing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.