Summary Spinal muscular atrophy (SMA) is a motor neuron disease caused by reduced levels of the survival of motor neuron (SMN) protein. SMN is part of a multiprotein complex that facilitates the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). SMN has also been found to associate with mRNA binding proteins but the nature of this association was unknown. Here we have employed a combination of biochemical and advanced imaging methods to demonstrate that SMN promotes the molecular interaction between IMP1 protein and the 3′ UTR zipcode region of β-actin mRNA, leading to assembly of messenger ribonucleoprotein complexes (mRNPs) that associate with the cytoskeleton to facilitate trafficking. We have identified defects in mRNP assembly in cells and tissues from SMA disease models and patients that depend on the SMN Tudor domain and explain the observed deficiency in mRNA localization and local translation, providing insight into SMA pathogenesis as an RNP-assembly disorder.
Down syndrome (DS) is the most common genetic cause of intellectual disability and results from an extra chromosome 21 (Trisomy 21). Sleep issues and/or obstructive sleep apnea (OSA) are assumed to be part of the DS phenotype with a high prevalence but are often under recognized. This cross-sectional study of children with DS examines the caregiver reported sleep behaviors of 108 children with DS, ranging in age from 1.50 to 13.40 years (mean = 5.18 years) utilizing a standardized assessment tool, the Children's Sleep Habit Questionnaire (CSHQ). The CSHQ revealed 76% of children with DS had sleep problems, which began at a young age, and continue to persist and may recur with increasing age. Furthermore, children with DS who undergone adenoid and tonsillectomy for OSA continued to have sleep problems suggesting that ongoing monitoring of sleep issues is needed in this population. Implications of sleep problems and recommended anticipatory guidance and intervention are discussed.
Background Quantifying associations between genetic mutations and loss of ambulation (LoA) among males diagnosed with childhood‐onset dystrophinopathy is important for understanding variation in disease progression and may be useful in clinical trial design. Methods Genetic and clinical data from the Muscular Dystrophy Surveillance, Tracking, and Research Network for 358 males born and diagnosed from 1982 to 2011 were analyzed. LoA was defined as the age at which independent ambulation ceased. Genetic mutations were defined by overall type (deletion/duplication/point mutation) and among deletions, those amenable to exon‐skipping therapy (exons 8, 20, 44–46, 51–53) and another group. Cox proportional hazards regression modeling was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Results Mutation type did not predict time to LoA. Controlling for corticosteroids, Exons 8 (HR = 0.22; 95% CI = 0.08, 0.63) and 44 (HR = 0.30; 95% CI = 0.12, 0.78) were associated with delayed LoA compared to other exon deletions. Conclusions Delayed LoA in males with mutations amenable to exon‐skipping therapy is consistent with previous studies. These findings suggest that clinical trials including exon 8 and 44 skippable males should consider mutation information prior to randomization.
Objective: The US risdiplam expanded access program (EAP; NCT04256265) was opened to provide individuals with Type 1 or 2 spinal muscular atrophy (SMA) who had no satisfactory treatment options access to risdiplam prior to commercial availability. The program was designed to collect safety data during risdiplam treatment. Methods: Patients were enrolled from 23 non-preselected sites across 17 states and treated with risdiplam orally once daily. Eligible patients had a 5q autosomal recessive Type 1 or 2 SMA diagnosis, were aged ≥2 months at enrollment, and were ineligible for available and approved SMA treatments or could not continue treatment due to a medical condition, lack/ loss of efficacy, or the COVID-19 pandemic. Results: Overall, 155 patients with Type 1 (n = 73; 47.1%) or 2 SMA (n = 82; 52.9%) were enrolled and 149 patients (96.1%) completed the EAP (defined as obtaining access to commercial risdiplam, if desired). The median treatment duration was 4.8 months (range, 0.3-9.2 months). The median patient age was 11 years (range, 0-50 years), and most patients (n = 121; 78%) were previously treated with a disease-modifying therapy. The most frequently reported adverse events were diarrhea (n = 10; 6.5%), pyrexia (n = 7; 4.5%), and upper respiratory tract infection (n = 5; 3.2%). The most frequently reported serious adverse event was pneumonia (n = 3; 1.9%). No deaths were reported. Interpretation: In the EAP, the safety profile of risdiplam was similar to what was reported in pivotal risdiplam clinical trials. These safety data provide further support for the use of risdiplam in the treatment of adult and pediatric patients with SMA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.