This paper studies the amplitude-frequency characteristic of frontal steady-state visual evoked potential (SSVEP) and its feasibility as a control signal for brain computer interface (BCI). SSVEPs induced by different stimulation frequencies, from 13 ~ 31 Hz in 2 Hz steps, were measured in eight young subjects, eight elders and seven ALS patients. Each subject was requested to participate in a calibration study and an application study. The calibration study was designed to find the amplitude-frequency characteristics of SSVEPs recorded from Oz and Fpz positions, while the application study was designed to test the feasibility of using frontal SSVEP to control a two-command SSVEP-based BCI. The SSVEP amplitude was detected by an epoch-average process which enables artifact-contaminated epochs can be removed. The seven ALS patients were severely impaired, and four patients, who were incapable of completing our BCI task, were excluded from calculation of BCI performance. The averaged accuracies, command transfer intervals and information transfer rates in operating frontal SSVEP-based BCI were 96.1%, 3.43 s/command, and 14.42 bits/min in young subjects; 91.8%, 6.22 s/command, and 6.16 bits/min in elders; 81.2%, 12.14 s/command, and 1.51 bits/min in ALS patients, respectively. The frontal SSVEP could be an alternative choice to design SSVEP-based BCI.
Stress-Memorization-Technique by Si dislocations is effective in enhancing NFET device performance [1,2]. For the first time, MD (Molecular Dynamic) simulations are applied to explain the formation mechanism of dislocations during the Solid-Phase-Epitaxy-Regrowth (SPER) process. A semi-empirical TCAD method based on lattice-KMC (L-KMC) is then developed to predict dislocation formation. The simulated dislocation positions agree well with silicon experiments characterized by TEM. TCAD simulations show that the resulting dislocations are along the [111] direction and provide ~650MPa average longitudinal stress in channel regions, consistent with Nano-Beam-Diffraction (NBD) strain measurement. The channel stress is predicted by simulation to further increase by 1.5X after the poly-silicon gate removal step in a replacement-gate process. The dislocation SMT enhances NFET electron mobility by 25% and Ion-Ioff performance by 15%.
This paper reports the development of K-band wide-IF-band CMOS mixer with LO multiplier suitable for wideband applications. To achieve such broad bandwidth, several design techniques-such as current-reuse differentialpair with LC resonance circuit, and simultaneous in-band gain peaking and off-band gain tailoring-have been analyzed and employed. The on-wafer measurement of this 17.4-26.1GHz TSMC 0.18 m CMOS mixer with LO doubler shows a -1dB conversion gain, 11dB noise figure, -6dBm input-referred 1dB compression point, 40dB RF-IF isolation, and 45dB LO-IF isolation at 8.7GHz. The chip size is 1400 1300 m 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.