Goblet cell hyperplasia and mucous hypersecretion contribute to the pathogenesis of chronic pulmonary diseases including cystic fibrosis, asthma, and chronic obstructive pulmonary disease. In the present work, mouse SAM pointed domain-containing ETS transcription factor (SPDEF) mRNA and protein were detected in subsets of epithelial cells lining the trachea, bronchi, and tracheal glands. SPDEF interacted with the C-terminal domain of thyroid transcription factor 1, activating transcription of genes expressed selectively in airway epithelial cells, including Sftpa, Scgb1a1, Foxj1, and Sox17. Expression of Spdef in the respiratory epithelium of adult transgenic mice caused goblet cell hyperplasia, inducing both acidic and neutral mucins in vivo, and stainined for both acidic and neutral mucins in vivo. SPDEF expression was increased at sites of goblet cell hyperplasia caused by IL-13 and dust mite allergen in a process that was dependent upon STAT-6. SPDEF was induced following intratracheal allergen exposure and after Th2 cytokine stimulation and was sufficient to cause goblet cell differentiation of Clara cells in vivo.
The airways are lined by several distinct epithelial cells that play unique roles in pulmonary homeostasis; however, the mechanisms controlling their differentiation in health and disease are poorly understood. The winged helix transcription factor, FOXA2, is expressed in the foregut endoderm and in subsets of respiratory epithelial cells in the fetal and adult lung. Because targeted mutagenesis of the Foxa2 gene in mice is lethal before formation of the lung, its potential role in lung morphogenesis and homeostasis has not been determined. We selectively deleted Foxa2 in respiratory epithelial cells in the developing mouse lung. Airspace enlargement, goblet cell hyperplasia, increased mucin and neutrophilic infiltration were observed in lungs of the Foxa2-deleted mice. Experimental goblet cell hyperplasia caused by ovalbumin sensitization,interleukin 4 (IL4), IL13 and targeted deletion of the gene encoding surfactant protein C (SP-C), was associated with either absent or decreased expression of Foxa2 in airway epithelial cells. Analysis of lung tissue from patients with a variety of pulmonary diseases revealed a strong inverse correlation between FOXA2 and goblet cell hyperplasia. FOXA2 is required for alveolarization and regulates airway epithelial cell differentiation in the postnatal lung.
Lung morphogenesis begins with a ventral out-pouching of endodermally derived cells from the anterior foregut into the surrounding mesenchyme at E9 -9.5 1 in the mouse. Lung tubules are formed by branching morphogenesis as respiratory epithelial cells proliferate and differentiate to form the conducting airways. Thereafter, terminal airways sacculate and septate to form the alveoli typical of the peripheral lung. The ordered process mediating branching morphogenesis and the formation of the alveoli are regulated by the precise temporalspatial expression of many transcription factors, including Gata6, Ttf1, and forkhead transcription factors, including Foxa1, Foxa2, Foxj1, Foxf1, Foxp1, and Foxp2, that regulate gene expression and influence cell differentiation in the lung (1-6).Foxa (previously termed HNF3) transcription factors comprise a subfamily of forkhead transcription factors that share Ͼ90% homology in the winged helix DNA binding domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.