Background c-Myc, a well-established oncogene, plays an important role in the initiation and progression of various cancers, including prostate cancer. However, its mechanism in cancer cell remains largely unknown and whether there exist a deubiquitinase targeting c-Myc also remains elusive. Methods Bioinformatic analysis and shRNA screening methods were used to identify potential deubiquitinases that correlate with c-Myc gene signature. Cell proliferation and viability were measured by Cell-Counting-Kit 8 and colony formation assays. A mouse xenograft model of PC3 cells was established to confirm the function of USP16 in vivo. The interaction between USP16 and c-Myc protein was assessed by co-immunoprecipitation and protein co-localization assays. Immunohistochemistry staining was performed to detect the expression of USP16, Ki67, and c-Myc in xenograft tissues and clinical tumour tissues. Furthermore, the correlation between USP16 and c-Myc was confirmed by RNA sequencing. Results Functional analyses identified USP16, known as a deubiquitinase, was strongly correlated with the c-Myc gene signature. Depletion of USP16 was shown to significantly suppress the growth of PCa cells both in vitro and in vivo. Co-immunoprecipitation and ubiquitination assays confirmed that USP16 served as a novel deubiquitinase of c-Myc and overexpression of c-Myc significantly rescued the effects of USP16 disruption. Immunohistochemistry staining and RNA-seq tactics were further used to confirm the positive correlation between USP16 and c-Myc expression. Expression of USP16 in human PCa tissues was higher than that seen in normal prostate tissues and its high expression was found associated with poor prognosis. Conclusions USP16 serves as a novel deubiquitinase of c-Myc. Downregulation of USP16 markedly suppressed PCa cell growth both in vitro and in vivo. USP16 regulates PCa cell proliferation by deubiquitinating and stabilizing c-Myc, making it a potential therapeutic candidate for the treatment of PCa.
Prostate cancer (PCa) has become a leading cause of cancer-associated incidence and mortality in men worldwide. However, most primary PCas relapse to castration-resistant PCa (CRPC) after androgen deprivation treatment. The current treatment for CRPC is based on chemotherapeutic drugs such as docetaxel, while the development of chemoresistance and severe side effects limit the therapeutic benefit. Solamargine, a natural alkaloid isolated from a traditional Chinese herbal medicine known as Solanum nigrum, exhibits antitumor activity in various human cancers. In this study, we demonstrated that solamargine substantially inhibited CRPC cell growth in a dose-dependent manner through the suppression of phosphoinositide 3-kinase (PI3K)/Akt signaling. Moreover, solamargine exhibited significant antitumor effects in mouse xenograft models. Bioinformatics analysis of docetaxel-resistant PCa cells indicated that the PI3K/Akt pathway mediated the chemoresistance of CRPC. Furthermore, solamargine significantly enhanced the efficacy of docetaxel in PCa cells. These results reveal the therapeutic potential of solamargine against human PCa.
Background DDX52 is a type of DEAD/H box RNA helicase that was identified as a novel prostate cancer (PCa) genetic locus and possible causal gene in a European large-scale transcriptome-wide association study. However, the functions of DDX52 in PCa remain undetermined. The c-Myc oncogene plays a crucial role in the development of PCa, but the factors that regulate the activity of c-Myc in PCa are still unknown. Methods We determined DDX52 protein levels in PCa tissues using immunohistochemistry (IHC). DDX52 expression and survival outcomes in other PCa cohorts were examined using bioinformatics analysis. The inhibition of DDX52 via RNA interference with shRNA was used to clarify the effects of DDX52 on PCa cell growth in vitro and in vivo. Gene set enrichment analysis and RNA sequencing were used to explore the signaling regulated by DDX52 in PCa. Western blotting and IHC were used to determine the possible DDX52 signaling mechanism in PCa. Results DDX52 expression was upregulated in PCa tissues. Bioinformatics analysis showed that the level of DDX52 further increased in advanced PCa, with a high DDX52 level indicating a poor outcome. In vitro and in vivo experiments showed that downregulating DDX52 impeded the growth of PCa cells. High DDX52 levels contributed to activating c-Myc signaling in PCa patients and PCa cells. Furthermore, DDX52 expression was regulated by c-Myc and positively correlated with c-Myc expression in PCa. Conclusion DDX52 was overexpressed in PCa tissues in contrast to normal prostate tissues. DDX52 knockdown repressed the growth of PCa cells in vitro and in vivo. Deleting c-Myc inhibited DDX52 expression, which affected the activation of c-Myc signaling.
Backgroundc-Myc, a well-established oncogene, plays an important role in the initiation and progression of various cancers, including prostate cancer. However, its mechanism in cancer cell remains largely unknown and whether there exist a deubiquitinase targeting c-Myc also remains elusive.MethodsBioinformatic analysis and shRNA screening methods were used to identify potential deubiquitinases that correlate with c-Myc gene signature. Cell proliferation and viability were measured by Cell-Counting-Kit 8 and colony formation assays. A mouse xenograft model of PC3 cells was established to confirm the function of USP16 in vivo. The interaction between USP16 and c-Myc protein was assessed by co-immunoprecipitation and protein co-localization assays. Immunohistochemistry staining was performed to detect the expression of USP16, Ki67, and c-Myc in xenograft tissues and clinical tumour tissues. Furthermore, the correlation between USP16 and c-Myc was confirmed by RNA sequencing.ResultsFunctional analyses identified USP16, known as a deubiquitinase, was strongly correlated with the c-Myc gene signature. Depletion of USP16 was shown to significantly suppress the growth of PCa cells both in vitro and in vivo. Co-immunoprecipitation and ubiquitination assays confirmed that USP16 served as a novel deubiquitinase of c-Myc and overexpression of c-Myc significantly rescued the effects of USP16 disruption. Immunohistochemistry staining and RNA-seq tactics were further used to confirm the positive correlation between USP16 and c-Myc expression. Expression of USP16 in human PCa tissues was higher than that seen in normal prostate tissues and its high expression was found associated with poor prognosis.ConclusionsUSP16 serves as a novel deubiquitinase of c-Myc. Downregulation of USP16 markedly suppressed PCa cell growth both in vitro and in vivo. USP16 regulates PCa cell proliferation by deubiquitinating and stabilizing c-Myc, making it a potential therapeutic candidate for the treatment of PCa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.