The sintering process of graphene nanoplatelet (GNP) reinforced aluminum matrix composite powder was simulated by molecular dynamics method. The effects of Al nanoparticle size and sintering temperature on sintering behavior were studied. Uniaxial tensile simulation was applied to study the mechanical properties of sintered composites. The results show that the nanoparticle size and sintering temperature have significant effects on the sintering behavior of the composites. Smaller size nanoparticle system has lower melting point, which requires lower sintering temperature. Larger size particle system requires longer sintering time and higher sintering temperature. At lower temperatures, the main coalescence mechanisms of nanoparticle systems are surface diffusion and grain boundary diffusion. When the temperature is close to the melting point, volume diffusion and surface diffusion dominate. Tensile simulation results of sintered composites show that the addition of GNP can greatly improve the mechanical properties of the composites. Dislocation reinforcement and stress transfer are the main reinforcement mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.