We conduct a series of numerical experiments into the nature of three-dimensional (3D) hydrodynamics in the postbounce stalled-shock phase of core-collapse supernovae using 3D general-relativistic hydrodynamic simulations of a 27-M progenitor star with a neutrino leakage/heating scheme. We vary the strength of neutrino heating and find three cases of 3D dynamics: (1) neutrino-driven convection, (2) initially neutrino-driven convection and subsequent development of the standing accretion shock instability (SASI), (3) SASI dominated evolution. This confirms previous 3D results of Hanke et al. (2013), ApJ 770:66 and Couch & Connor (2014), ApJ 785:123. We carry out simulations with resolutions differing by up to a factor of ∼4 and demonstrate that low resolution is artificially favorable for explosion in the 3D convection-dominated case, since it decreases the efficiency of energy transport to small scales. Low resolution results in higher radial convective fluxes of energy and enthalpy, more fully buoyant mass, and stronger neutrino heating. In the SASI-dominated case, lower resolution damps SASI oscillations. In the convection-dominated case, a quasi-stationary angular kinetic energy spectrum E( ) develops in the heating layer. Like other 3D studies, we find E( ) ∝ −1 in the "inertial range," while theory and local simulations argue for E( ) ∝ −5/3 . We argue that current 3D simulations do not resolve the inertial range of turbulence and are affected by numerical viscosity up to the energy containing scale, creating a "bottleneck" that prevents an efficient turbulent cascade.
We develop analytic and numerical models of the properties of super-Eddington stellar winds, motivated by phases in stellar evolution when super-Eddington energy deposition (via, e.g., unstable fusion, wave heating, or a binary companion) heats a region near the stellar surface. This appears to occur in luminous blue variables (LBVs), Type IIn supernovae progenitors, classical novae, and X-ray bursts. We show that when the wind kinetic power exceeds Eddington, the photons are trapped and behave like a fluid. Convection does not play a significant role in the wind energy transport. The wind properties depend on the ratio of a characteristic speed in the problem v crit ∼ (ĖG) 1/5 (whereĖ is the heating rate) to the stellar escape speed near the heating region v esc (r h ). For v crit v esc (r h ) the wind kinetic power at large radiiĖ w ∼Ė. For v crit v esc (r h ), most of the energy is used to unbind the wind material and thusĖ w Ė . Multidimensional hydrodynamic simulations without radiation diffusion using FLASH and one-dimensional hydrodynamic simulations with radiation diffusion using MESA are in good agreement with the analytic predictions. The photon luminosity from the wind is itself superEddington but in many cases the photon luminosity is likely dominated by 'internal shocks' in the wind. We discuss the application of our models to eruptive mass loss from massive stars and argue that the wind models described here can account for the broad properties of LBV outflows and the enhanced mass loss in the years prior to Type IIn core-collapse supernovae.
We use relativistic hydrodynamic numerical calculations to study the interaction between a jet and a homologous outflow produced dynamically during binary neutron star mergers. We quantify how the thermal energy supplied by the jet to the ejecta and the ability of a jet to escape the homologous ejecta depend on the parameters of the jet engine and the ejecta. For collimated jets initiated at early times compared to the engine duration, we show that successful breakout of the forward cocoon shock necessitates a jet that successfully escapes the ejecta. This is because the ejecta is expanding and absorbing thermal energy, so that the forward shock from a failed jet stalls before it reaches the edge of the ejecta. This conclusion can be circumvented only for very energetic wide angle jets, with parameters that are uncomfortable given short-duration GRB observations. For successful jets, we find two regimes of jet breakout from the ejecta, early breakout on timescales shorter than the engine duration, and late breakout well after the engine shuts off. A late breakout can explain the observed delay between gravitational waves and gamma rays in GW 170817. We show that for the entire parameter space of jet parameters surveyed here (covering energies ∼ 10 48 − 10 51 ergs and opening angles θ j ∼ 0.07 − 0.4) the thermal energy deposited into the ejecta by the jet propagation is less than that produced by r-process heating on second timescales by a factor of 10. Shock heating is thus energetically subdominant in setting the luminosity of thermally powered transients coincident with neutron star mergers (kilonovae). For typical short GRB jet parameters, our conclusion is stronger: there is little thermal energy in the cocoon, much less than what is needed to explain the early blue component of the kilonova in GW 170817.
Gravitational waves (GW) generated during a core-collapse supernova open a window into the heart of the explosion. At core bounce, progenitors with rapid core rotation rates exhibit a characteristic GW signal which can be used to constrain the properties of the core of the progenitor star. We investigate the dynamics of rapidly rotating core collapse, focusing on hydrodynamic waves generated by the core bounce and the GW spectrum they produce. The centrifugal distortion of the rapidly rotating proto-neutron star (PNS) leads to the generation of axisymmetric quadrupolar oscillations within the PNS and surrounding envelope. Using linear perturbation theory, we estimate the frequencies, amplitudes, damping times, and GW spectra of the oscillations. Our analysis provides a qualitative explanation for several features of the GW spectrum and shows reasonable agreement with nonlinear hydrodynamic simulations, although a few discrepancies due to non-linear/rotational effects are evident. The dominant early postbounce GW signal is produced by the fundamental quadrupolar oscillation mode of the PNS, at a frequency 0.70 kHz f 0.80 kHz, whose energy is largely trapped within the PNS and leaks out on a ∼ 10 ms timescale. Quasi-radial oscillations are not trapped within the PNS and quickly propagate outwards until they steepen into shocks. Both the PNS structure and Coriolis/centrifugal forces have a strong impact on the GW spectrum, and a detection of the GW signal can therefore be used to constrain progenitor properties.
We present a simple diagnostic that can be used to constrain the location of the differential rotation in red giants with measured mixed mode rotational splittings. Specifically, in red giants with radii ∼ 4R , the splittings of p-dominated modes (sound wave dominated) relative to those of g-dominated modes (internal gravity wave dominated) are sensitive to how much of the differential rotation resides in the outer convection zone versus the radiative interior of the red giant. An independently measured surface rotation rate significantly aids breaking degeneracies in interpreting the measured splittings. We apply our results to existing observations of red giants, particularly those of Kepler-56, and find that most of the differential rotation resides in the radiative region rather than in the convection zone. This conclusion is consistent with results in the literature from rotational inversions, but our results are insensitive to some of the uncertainties in the inversion process and can be readily applied to large samples of red giants with even a modest number of measured rotational splittings. We argue that differential rotation in the radiative interior strongly suggests that angular momentum transport in red giants is dominated by local fluid instabilities rather than large-scale magnetic stresses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.