Lactobacillus rhamnosus GG, a probiotic with good survival capacity in the human gut, has well-documented adhesion properties and health effects. Recently, spaCBA-encoded pili that bind to human intestinal mucus were identified on its cell surface.
Bacterial communities are known to impact human health and disease. Mixed species biofilms, mostly pathogenic in nature, have been observed in dental and gastric infections as well as in intestinal diseases, chronic gut wounds and colon cancer. Apart from the appendix, the presence of thick polymicrobial biofilms in the healthy gut mucosa is still debated. Polymicrobial biofilms containing potential pathogens appear to be an early-warning signal of developing disease and can be regarded as a tipping point between a healthy and a diseased state of the gut mucosa. Key biofilm-forming pathogens and associated molecules hold promise as biomarkers. Criteria to distinguish microcolonies from biofilms are crucial to provide clarity when reporting biofilm-related phenomena in health and disease in the gut.
Background A vaginal microbiota dominated by lactobacilli (particularly Lactobacillus crispatus ) is associated with vaginal health, whereas a vaginal microbiota not dominated by lactobacilli is considered dysbiotic. Here we investigated whether L. crispatus strains isolated from the vaginal tract of women with Lactobacillus- dominated vaginal microbiota (LVM) are pheno- or genotypically distinct from L. crispatus strains isolated from vaginal samples with dysbiotic vaginal microbiota (DVM). Results We studied 33 L. crispatus strains ( n = 16 from LVM; n = 17 from DVM). Comparison of these two groups of strains showed that, although strain differences existed, both groups degraded various carbohydrates, produced similar amounts of organic acids, inhibited Neisseria gonorrhoeae growth, and did not produce biofilms. Comparative genomics analyses of 28 strains ( n = 12 LVM; n = 16 DVM) revealed a novel, 3-fragmented glycosyltransferase gene that was more prevalent among strains isolated from DVM. Most L. crispatus strains showed growth on glycogen-supplemented growth media. Strains that showed less-efficient ( n = 6) or no ( n = 1) growth on glycogen all carried N-terminal deletions (respectively, 29 and 37 amino acid deletions) in a putative pullulanase type I protein. Discussion L. crispatus strains isolated from LVM were not phenotypically distinct from L. crispatus strains isolated from DVM; however, the finding that the latter were more likely to carry a 3-fragmented glycosyltransferase gene may indicate a role for cell surface glycoconjugates, which may shape vaginal microbiota-host interactions. Furthermore, the observation that variation in the pullulanase type I gene is associated with growth on glycogen discourages previous claims that L. crispatus cannot directly utilize glycogen. Electronic supplementary material The online version of this article (10.1186/s40168-019-0667-9) contains supplementary material, which is available to authorized users.
SUMMARY Humans have been increasingly recognized as being superorganisms, living in close contact with a microbiota on all their mucosal surfaces. However, most studies on the human microbiota have focused on gaining comprehensive insights into the composition of the microbiota under different health conditions (e.g., enterotypes), while there is also a need for detailed knowledge of the different molecules that mediate interactions with the host. Glycoconjugates are an interesting class of molecules for detailed studies, as they form a strain-specific barcode on the surface of bacteria, mediating specific interactions with the host. Strikingly, most glycoconjugates are synthesized by similar biosynthesis mechanisms. Bacteria can produce their major glycoconjugates by using a sequential or an en bloc mechanism, with both mechanistic options coexisting in many species for different macromolecules. In this review, these common themes are conceptualized and illustrated for all major classes of known bacterial glycoconjugates, with a special focus on the rather recently emergent field of glycosylated proteins. We describe the biosynthesis and importance of glycoconjugates in both pathogenic and beneficial bacteria and in both Gram-positive and -negative organisms. The focus lies on microorganisms important for human physiology. In addition, the potential for a better knowledge of bacterial glycoconjugates in the emerging field of glycoengineering and other perspectives is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.