SARS-CoV-2 is evolving with mutations in the receptor binding domain (RBD) being of particular concern. It is important to know how much cross-protection is offered between strains following vaccination or infection. Here, we obtain serum and saliva samples from groups of vaccinated (Pfizer BNT-162b2), infected and uninfected individuals and characterize the antibody response to RBD mutant strains. Vaccinated individuals have a robust humoral response after the second dose and have high IgG antibody titers in the saliva. Antibody responses however show considerable differences in binding to RBD mutants of emerging variants of concern and substantial reduction in RBD binding and neutralization is observed against a patient-isolated South African variant. Taken together our data reinforce the importance of the second dose of Pfizer BNT-162b2 to acquire high levels of neutralizing antibodies and high antibody titers in saliva suggest that vaccinated individuals may have reduced transmission potential. Substantially reduced neutralization for the South African variant further highlights the importance of surveillance strategies to detect new variants and targeting these in future vaccines.
Background: To understand the dynamic behavior of cellular systems, mathematical modeling is often necessary and comprises three steps: (1) experimental measurement of participating molecules, (2) assignment of rate laws to each reaction, and (3) parameter calibration with respect to the measurements. In each of these steps the modeler is confronted with a plethora of alternative approaches, e. g., the selection of approximative rate laws in step two as specific equations are often unknown, or the choice of an estimation procedure with its specific settings in step three. This overall process with its numerous choices and the mutual influence between them makes it hard to single out the best modeling approach for a given problem.
The SARS-CoV-2 pandemic virus is consistently evolving with mutations within the receptor binding domain (RBD) being of particular concern. To date, there is little research into protection offered following vaccination or infection against RBD mutants in emerging variants of concern (UK, South African, Mink and Southern California). To investigate this, serum and saliva samples were obtained from groups of vaccinated (Pfizer BNT-162b2), infected and uninfected individuals. Antibody responses among groups, including salivary antibody response and antibody binding to RBD mutant strains were examined. The neutralization capacity of the antibody response against a patient-isolated South African variant was tested by viral neutralization tests and further verified by an ACE2 competition assay. We found that humoral responses in vaccinated individuals showed a robust response after the second dose. Interestingly, IgG antibodies were detected in large titers in the saliva of vaccinated subjects. Antibody responses showed considerable differences in binding to RBD mutants in emerging variants of concern. A substantial reduction in RBD binding and neutralization was detected for the South African variant. Taken together our data reinforces the importance of administering the second dose of Pfizer BNT-162b2 to acquire high levels of neutralizing antibodies. High antibody titers in saliva suggest that vaccinated individuals may have reduced transmission potential. Substantially reduced neutralization for the South African variant highlights importance of surveillance strategies to detect new variants and targeting these in future vaccines.
Mass spectrometry and peptide-centric approaches are powerful techniques for the identification of differentially expressed proteins. Despite enormous improvements in MS technologies, sample preparation and efficient fractionation of target analytes are still major bottlenecks in MS-based protein analysis. The complexity of tryptically digested whole proteomes needs to be considerably reduced before low abundance proteins can be effectively analyzed using MS/MS. Sample preparation strategies that use peptide-specific antibodies are able to reduce the complexity of tryptic digests and lead to a substantial increase in throughput and sensitivity; however, the number of peptide-specific capture reagents is low, and consequently immunoaffinity-based approaches are only capable of detecting small sets of protein-derived peptides. In this proof-of-principle study, special anti-peptide antibodies were used to enrich peptides from a complex mixture. These antibodies recognize short amino acid sequences that are found directly at the termini of the peptides. The recognized epitopes consist of three or four amino acids only and include the terminally charged group of the peptide. Because of its limited length, antibodies recognizing the epitope will enrich not only one peptide but a whole class of peptides that share this terminal epitope. In this study, -catenin-derived peptides were used to demonstrate that it is possible (i) to effectively generate antibodies that recognize short C-terminal peptide epitopes and (ii) to enrich and identify peptide classes from a complex mixture using these antibodies in an immunoaffinity MS approach. The expected -catenin peptides and a set of 38 epitope-containing peptides were identified from trypsin-digested cell lysates. This might be a first step in the development of proteomics applications that are based on the use of peptide class-specific antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.