Cereal Chem. 81(1):134-139The effect of baking method on folates of rye and wheat breads, as well as the effect of sourdough fermentation of rye, were examined. Sourdough fermentations were performed both with and without added yeast, and samples were taken throughout the baking process. Samples were analyzed microbiologically for their total folate content after trienzyme extraction. Individual folate vitamers were determined by HPLC after affinity chromatographic purification. The lowest folate contents for both rye and wheat breads were found from breads baked without added yeast. Total folate content increased considerably during sourdough fermentation due to increased amounts of 10-HCO-H 2 folate, 5-CH 3 -H 4 folate, and 5-HCO-H 4 folate. Baker's yeast contributed markedly to the final folate content of bread by synthesizing folates during fermentation. Proofing did not influence total folate content but changes in vitamer distribution were observed. Folate losses in baking were 25%. The variety of sourdoughs and baking processes obviously lead to great variation in folate content of rye breads. The possibilities to enhance natural folate content of rye bread by improving folate retention in technological processes and by screening and combining suitable yeasts and lactic acid bacteria should be further investigated.
Fortification of foods is a feasible way of preventing low vitamin D status. Bread could be a suitable vehicle for fortification because it is a common part of diets worldwide. The bioavailability of cholecalciferol from bread is not known. We studied cholecalciferol stability, the concentration of the added cholecalciferol, the dispersion of cholecalciferol in bread, and the bioavailability of cholecalciferol from fortified bread. Three batches of fortified low-fiber wheat and high-fiber rye breads were baked; from each batch, 3 samples of dough and bread were analyzed for their cholecalciferol content. In a single-blind bioavailability study, 41 healthy women, 25-45 y old, with mean serum 25-hydroxyvitamin D concentration 29 nmol/L (range 12-45 nmol/L), were randomly assigned to 4 study groups. Each group consumed fortified wheat bread, fortified rye bread, regular wheat bread (control), or regular wheat bread and a cholecalciferol supplement (vitamin D control) daily for 3 wk. The daily dose of vitamin D was 10 mug in all groups except the control group. The vitamin dispersed evenly in the breads and was stable. Both fortified breads increased serum 25-hydroxyvitamin D concentration as effectively as the cholecalciferol supplement. Supplementation or fortification did not affect serum intact parathyroid hormone concentration or urinary calcium excretion. In conclusion, fortified bread is a safe and feasible way to improve vitamin D nutrition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.