Brown japonica rice was treated with 60 Co γ irradiation at doses of 0, 0.2, 0.5, 1.0, and 2.0 kGy immediately after harvesting. The effects of irradiation on physicochemical, structural, and sensory properties during long-term storage (18 months) were investigated. The study revealed that the pasting properties, including peak, through, breakdown, final, and setback viscosities, decrease considerably in a dose-dependent manner and vary differently during 18 months of storage. Irradiation reduced the free fatty acid (FFA) content in comparison with unirradiated brown rice with long-term storage (from 12 to 18 months). Scanning electron microscope (SEM) observation showed that the mean range and shape of starch granules did not vary significantly. However, dark spots developed among starch granules and the narrow cracks became wider with increasing irradiation dose and storage time. During sensory evaluation, extremely low scores for odor and overall acceptability were obtained for medium-dose irradiated rice (1.0 and 2.0 kGy); however, no significant difference was found in acceptability between low-dose irradiated rice (0.2 and 0.5 kGy) and the control rice (0 kGy). Overall, low-dose (0.5 kGy or below) irradiation seems to be a promising alternative treatment to increase brown rice shelf life, without affecting the physicochemical and structural characteristics and sensory acceptability.
SummaryIn coeliac disease, the intake of dietary gluten induces small-bowel mucosal damage and the production of immunoglobulin (Ig)A class autoantibodies against transglutaminase 2 (TG2). We examined the effect of coeliac patient IgA on the apical-to-basal passage of gluten-derived gliadin peptides p31-43 and p57-68 in intestinal epithelial cells. We demonstrate that coeliac IgA enhances the passage of gliadin peptides, which could be abolished by inhibition of TG2 enzymatic activity. Moreover, we also found that both the apical and the basal cell culture media containing the immunogenic gliadin peptides were able to induce the proliferation of deamidation-dependent coeliac patient-derived T cells even in the absence of exogenous TG2. Our results suggest that coeliac patient IgA could play a role in the transepithelial passage of gliadin peptides, a process during which they might be deamidated.
The course of protein–lipid co‐oxidation was investigated in oil‐in‐water emulsions stabilized with proteins extracted from microwave‐treated (MWT) and conventional thermal‐treated (CTT) faba beans stored at 37°C for 7 days. Emulsions prepared with proteins from untreated (UT) faba beans and soy protein isolate (SP) were monitored for comparison. Lipid oxidation was detected through formation of primary and secondary oxidation products while protein oxidation was examined via tryptophan fluorescence degradation in interface and aqueous phase. Oxidation of proteins was more emphasized in the interfacial layers of MWT, CTT, and SP emulsions than in UT emulsions due to the prominence of radical chain‐driven co‐oxidation mechanism while lipoxygenase (LOX) activity in UT and MWT emulsions resulted in high amounts of hydroperoxides and abundance in lipid oxidation volatiles. Conventional thermal treatment provided better oxidative stability than microwave treatment reflected in lower levels of hydroperoxides and relative lack of diversity in lipid volatiles. Among detected volatiles, formation of ketones was more distinguished in MWT, CTT, and SP emulsions while UT emulsions contained a more diverse range of alkenals and alkanals. Ketones are known to form mainly through radical recombination reactions which combined with the results of protein oxidation supports that radical transfer reactions between proteins and lipids were the driving force behind oxidation in MWT, CTT, and SP emulsions. Treatments of faba beans resulted in increased oxidative stability of emulsified lipids and lower degradation of aqueous phase proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.