SummaryIn coeliac disease, the intake of dietary gluten induces small-bowel mucosal damage and the production of immunoglobulin (Ig)A class autoantibodies against transglutaminase 2 (TG2). We examined the effect of coeliac patient IgA on the apical-to-basal passage of gluten-derived gliadin peptides p31-43 and p57-68 in intestinal epithelial cells. We demonstrate that coeliac IgA enhances the passage of gliadin peptides, which could be abolished by inhibition of TG2 enzymatic activity. Moreover, we also found that both the apical and the basal cell culture media containing the immunogenic gliadin peptides were able to induce the proliferation of deamidation-dependent coeliac patient-derived T cells even in the absence of exogenous TG2. Our results suggest that coeliac patient IgA could play a role in the transepithelial passage of gliadin peptides, a process during which they might be deamidated.
Celiac disease is a common inflammatory disorder with a prevalence of 1-2 % in which a distinct dietary wheat, rye, and barley component, gluten, induces small-bowel mucosal villous atrophy, crypt hyperplasia, and inflammation. The small-bowel mucosal damage can be reversed by a strict lifelong gluten-free diet, which is currently the only effective treatment for the condition. A key player in the pathogenetic process leading to the enteropathy is played by a protein called transglutaminase 2 (TG2), which is able to enzymatically modify gluten-derived gliadin peptides. The TG2-catalyzed deamidation of the gliadin peptides results in their increased binding affinity to the disease-predisposing human leukocyte antigen (HLA) DQ2 and DQ8 molecules, thus enabling a strong immune response to be launched. Blocking the enzymatic activity of TG2 has thus been suggested as a suitable novel pharmacological approach to treat celiac disease. By virtue of its transamidation capacity, TG2 is also able to cross-link gliadin peptides to itself, this resulting in the generation of TG2-gliadin peptide complexes whose presence might provide an explanation for the generation of the TG2 autoantibodies characteristic of celiac disease. Due to their excellent specificity for the disorder, the TG2-targeted autoantibodies are widely used in the diagnostics as a first-line test to select patients for gastrointestinal endoscopy. More recently, it has come to be appreciated that these autoantibodies and also the TG2-specific B cells might play an active role in the disease pathogenesis. In this review, we assess the role of TG2, TG2-specific B cells, and autoantibodies in celiac disease.
Our results suggest that TG2 inhibitors are able to reduce certain gliadin-induced effects related to responses in vitro and ex vivo.
In genetically predisposed individuals, dietary gluten in wheat, rye and barley triggers celiac disease, a systemic autoimmune disorder hallmarked by an extensive small-bowel mucosal immune response. The current conception of celiac disease pathogenesis is that it involves components of both innate and adaptive immunity whose activation typically leads to small-bowel villous atrophy with crypt hyperplasia. Currently, the only effective treatment for celiac disease is a strict lifelong gluten-free diet excluding all wheat-, rye- and barley-containing food products. During the diet, the clinical symptoms improve and the small-bowel mucosal damage recovers, while re-introduction of gluten into the diet leads to re-appearance of the symptoms and deterioration of the small-bowel mucosal architecture. In view of the restricted nature of the diet, alternative treatment is warranted. Improved understanding of the molecular basis of celiac disease has enabled researchers to suggest other therapeutic approaches. Although there is no animal model reproducing all features of celiac disease, the use of in vitro approaches including a variety of cell lines and the celiac patient small-bowel mucosal biopsy organ culture has generated knowledge about pathogenesis of celiac disease. In these culture systems, gluten induces different effects that can be quantified, thus also enabling studies concerning the efficacy of candidate therapeutic compounds for celiac disease. This review describes the intestinal epithelial cell models, celiac patient T-cell lines and clones, as well as the small-bowel mucosal organ culture methods widely used in studies of celiac disease, and summarizes the major findings obtained with these systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.