The standard picture of photovoltaic conversion in all-organic bulk heterojunction solar cells predicts that the initial excitation dissociates at the donor/acceptor interface after thermalization. Accordingly, on above-gap excitation, the excess photon energy is quickly lost by internal dissipation. Here we directly target the interfacial physics of an efficient low-bandgap polymer/PC(60)BM system. Exciton splitting occurs within the first 50 fs, creating both interfacial charge transfer states (CTSs) and polaron species. On high-energy excitation, higher-lying singlet states convert into hot interfacial CTSs that effectively contribute to free-polaron generation. We rationalize these findings in terms of a higher degree of delocalization of the hot CTSs with respect to the relaxed ones, which enhances the probability of charge dissociation in the first 200 fs. Thus, the hot CTS dissociation produces an overall increase in the charge generation yield.
This roadmap includes the perspectives and visions of leading researchers in the key areas of flexible and printable electronics. The covered topics are broadly organized by the device technologies (sections 1-9), fabrication techniques (sections 10-12), and design and modeling
A robotic platform is adopted to conduct a comprehensive solvent engineering for making lead halide perovskites in a high-throughput manner. Deeper insights into the working mechanisms and selection criteria of antisolvents are investigated and summarized. In addition, a reliable antisolvent database is established, and verification tests match well with the theory. Furthermore, our work provides significant guidance for designing functional and environment-friendly mixed solvent systems to fabricate high-quality perovskite materials or devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.