Heart valves are characterized to be highly flexible yet tough, and exhibit complex deformation characteristics such as nonlinearity, anisotropy, and viscoelasticity, which are, at best, only partially recapitulated in scaffolds for heart valve tissue engineering (HVTE). These biomechanical features are dictated by the structural properties and microarchitecture of the major tissue constituents, in particular collagen fibers. In this study, the unique capabilities of melt electrowriting (MEW) are exploited to create functional scaffolds with highly controlled fibrous microarchitectures mimicking the wavy nature of the collagen fibers and their load‐dependent recruitment. Scaffolds with precisely‐defined serpentine architectures reproduce the J‐shaped strain stiffening, anisotropic and viscoelastic behavior of native heart valve leaflets, as demonstrated by quasistatic and dynamic mechanical characterization. They also support the growth of human vascular smooth muscle cells seeded both directly or encapsulated in fibrin, and promote the deposition of valvular extracellular matrix components. Finally, proof‐of‐principle MEW trileaflet valves display excellent acute hydrodynamic performance under aortic physiological conditions in a custom‐made flow loop. The convergence of MEW and a biomimetic design approach enables a new paradigm for the manufacturing of scaffolds with highly controlled microarchitectures, biocompatibility, and stringent nonlinear and anisotropic mechanical properties required for HVTE.
Elastin is a key extracellular matrix (ECM) protein that imparts functional elasticity to tissues and therefore an attractive candidate for bioengineering materials. Genetically engineered elastin-like recombinamers (ELRs) maintain inherent properties of the natural elastin (e.g. elastic behavior, bioactivity, low thrombogenicity, inverse temperature transition) while featuring precisely controlled composition, the possibility for biofunctionalization and non-animal origin. Recently the chemical modification of ELRs to enable their crosslinking via a catalyst-free click chemistry reaction, has further widened their applicability for tissue engineering. Despite these outstanding properties, the generation of macroporous click-ELR scaffolds with controlled, interconnected porosity has remained elusive so far. This significantly limits the potential of these materials as the porosity has a crucial role on cell infiltration, proliferation and ECM formation. In this study we propose a strategy to overcome this issue by adapting the salt leaching/gas foaming technique to click-ELRs. As result, macroporous hydrogels with tuned pore size and mechanical properties in the range of many native tissues were reproducibly obtained as demonstrated by rheological measurements and quantitative analysis of fluorescence, scanning electron and two-photon microscopy images. Additionally, the appropriate size and interconnectivity of the pores enabled smooth muscle cells to migrate into the click-ELR scaffolds and deposit extracellular matrix. The macroporous structure together with the elastic performance and bioactive character of ELRs, the specificity and non-toxic character of the catalyst-free click-chemistry reaction, make these scaffolds promising candidates for applications in tissue regeneration. This work expands the potential use of ELRs and click chemistry systems in general in different biomedical fields.
Directed differentiation of induced pluripotent stem cells (iPSCs) towards specific lineages remains a major challenge in regenerative medicine, while there is a growing perception that this process can be influenced by the three-dimensional environment. In this study, we investigated whether iPSCs can differentiate towards mesenchymal stromal cells (MSCs) when embedded into fibrin hydrogels to enable a one-step differentiation procedure within a scaffold. Differentiation of iPSCs on tissue culture plastic or on top of fibrin hydrogels resulted in a typical MSC-like phenotype. In contrast, iPSCs embedded into fibrin gel gave rise to much smaller cells with heterogeneous growth patterns, absence of fibronectin, faint expression of CD73 and CD105, and reduced differentiation potential towards osteogenic and adipogenic lineage. Transcriptomic analysis demonstrated that characteristic genes for MSCs and extracellular matrix were upregulated on flat substrates, whereas genes of neural development were upregulated in 3D culture. Furthermore, the 3D culture had major effects on DNA methylation profiles, particularly within genes for neuronal and cardiovascular development, while there was no evidence for epigenetic maturation towards MSCs. Taken together, iPSCs could be differentiated towards MSCs on tissue culture plastic or on a flat fibrin hydrogel. In contrast, the differentiation process was heterogeneous and not directed towards MSCs when iPSCs were embedded into the hydrogel.
Tissue‐engineered constructs have great potential in many intervention strategies. In order for these constructs to function optimally, they should ideally mimic the cellular alignment and orientation found in the tissues to be treated. Here we present a simple and reproducible method for the production of cell‐laden pure fibrin micro‐fibers with longitudinal topography. The micro‐fibers were produced using a molding technique and longitudinal topography was induced by a single initial stretch. Using this method, fibers up to 1 m in length and with diameters of 0.2–3 mm could be produced. The micro‐fibers were generated with embedded endothelial cells, smooth muscle cell/fibroblasts or Schwann cells. Polarized light and scanning electron microscopy imaging showed that the initial stretch was sufficient to induce longitudinal topography in the fibrin gel. Cells in the unstretched control micro‐fibers elongated randomly in both the floating and encapsulated environments, whereas the cells in the stretched micro‐fibers responded to the introduced topography by adopting a similar orientation. Proof of concept bottom‐up tissue engineering (TE) constructs are shown, all displaying various anisotropic organization of cells within. This simple, economical, versatile and scalable approach for the production of highly orientated and cell‐laden micro‐fibers is easily transferrable to any TE laboratory.
We propose in vitro endothelialization of drug-eluting stents (DES) to overcome late stent thrombosis by directly introducing late-outgrowth human endothelial progenitor cells (EPCs) at the target site utilizing abluminal DES. Isolated EPCs were confirmed as late-outgrowth EPCs by flow cytometric analysis. Abluminally paclitaxelloaded stents were seeded with different cell concentrations and durations to determine optimal seeding conditions, in both uncrimped and crimped configurations. The seeding yield was determined by evaluating the percent coverage of the stent struts' area. The EPC-seeded DES were exposed to arterial shear stress to evaluate the effect of high shear stress on EPCs. To investigate how much paclitaxel elutes during the seeding procedure, a pharmacokinetic analysis was performed. Finally, to validate the proof of concept, EPC-seeded DES were placed on a fibrin matrix with and without smooth muscle cells (SMCs) and cultured for 3 days under perfusion. The seeding procedure resulted in 47% and 26% coverage of the stent surface in uncrimped and crimped conditions, respectively. After the optimal seeding, almost 99% of drug was still available. When EPC-seeded DES were placed on a fibrin matrix and cultured for 3 days, the EPCs confluently covered the stent surface and spread to the surrounding fibrin gel. When EPC-seeded DES were placed on SMC-containing fibrin layers, cells in contact with the struts died. EPCs can be successfully seeded onto DES without losing drug-eluting capability, and EPCs exhibit sufficient proliferative ability. EPC
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.