1. 4-Methylcinnoline on irradiation in ethers produces the photoproducts 2-6 by a 1.4 addition of the ethers.2. Quinoxaline reacts with ethers to produce the quinoxalines 8, 12 and 13 by what appears superficially to be a substitution process. Reaction of 2,3-dimethylquinoxaline with tetrahydrofuran gives as the main product 16 by 1.2 addition, and Z-(l-butyl)-quinoxaline gives the dihydroquinoxaline derivatives 17% b. Because of the known easy autoxidation of 1,2-dihydroquinoxaline we believe that the intermediate in the photolytic reaction of quinoxaline, yielding 8, 12 and 13, is also the 1.2 addition product.3. The mass-spectrometric behaviour of the cinnoline and quinoxaline derivatives has been discussed.Anlasslich unserer photochemischen Arbeiten an Heterocyclen wurde festgestellt. dass 4-2CZethy2cinnolin (1) bei Gegenwart von Benzophenon, uiiter Ausschluss von Sauerstoff und bei Bestrahlung mit einer UV.-Lampe, mit Athern unter Addition zu Derivaten des 1,4-Dihydrocinnolins reagiert. Renzophenon (andere Sensibilisatoren wurden nicht untersucht) ist notwendig. Neben den Photoprodukten entstanden stets noch Harze, und vie1 unverandertes Ausgangsmaterial wurde zuruckisoliert. Die in der Formelzusammenstellung angegebenen, massigen praparativen Ausbeuten sind, bei Bezugnahme auf das verbrauchte 4-hIethylcinnolin, mit dem Faktor 3-5 zu multiplizieren. Die Struktur der Photoprodukte 2-6 folgt aus Analysen, der Anwesenheit einer schwachen 1R.-Rande bei 1628 + 8 cm-1[2] (charakteristisch fur die >N -3' = C<-Gruppierung) und dem UV.-Maximum bei 289-294 nm. Besonders wichtig erwiesen sich die NMR.-Spektren (60 und 100 MHz in CDC1,). Alle Stoffe zeigen ein breites, l) 10. Mitteilung iiber Photoreaktionen von Heterocyclen ; 9. hlitteilung : [I].
Some Irradiation Experiments with 2, 1‐Benzisothiazoles 2, 1‐Benzisothiazole (1) on irradiation with a mercury high‐pressure lamp in benzene/diethylamine yields, after acetylation, 2‐acetylamino‐benzaldehyde (3; Scheme 1). Similarly, irradiation of 3‐chloro‐2, 1‐benzisothiazole (2) in benzene/diethylamine leads to a mixture of 3‐dimethylamino‐2, 1‐benzisothiazole (6a) and N, N‐diethyl‐thioanthranilamide (7a; Scheme 2). Benzisothiazole 6a, on irradiation, is not transformed into 7a. On the other hand, when 2 is irradiated in methanol a mixture of 3‐methoxy‐2, 1‐benzisothiazole (4a) and methyl anthranilate (5a; Scheme 2) is obtained. In this case, 4a on irradiation in methanol or ethanol also yields 5a. No exchange of the methoxy group in 4a is observed when the irradiation is performed in ethanolic solution. Thus, 2, 1‐benzisothiazoles 1, 2 and 4a react photochemically by N,S‐bond cleavage and hydrogen‐atom abstraction from the solvent (Scheme 3). 3‐Chloro‐2, 1‐benzisothiazole (2) shows a second photoreaction, i.e. nucleophilic exchange of the chloro substituent by methanol or diethyl amine. The latter reaction can also be observed thermally, e.g. in boiling methanol in the presence of methoxide ions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.