Circular DNA such as plasmids and some viruses is the major source of genetic variation in bacteria and thus has the same important evolutionary function as sexual reproduction in eukaryotic species: It allows dissemination of advantageous traits through bacterial populations. Here, we present the largest collection of novel complete extrachromosomal genetic elements to date, and compare the diversity, distribution, and content of circular sequences from 12 rat cecum samples from the pristine Falkland Islands and Danish hospital sewers, two environments with contrasting anthropogenic impact. Using a validated pipeline, we find 1,869 complete, circular, non-redundant sequences, of which only 114 are previously described. While sequences of similar size from the two environments share general features, the size distribution of the elements between environments differs significantly, with hospital sewer samples hosting larger circular elements than Falkland Island samples, a possible consequence of the massive anthropogenic influence in the hospital sewer environment. Several antibiotic resistance genes have been identified with a notably larger diversity in hospital sewer samples than in Falkland Islands samples in concordance with expectations. Our findings suggest that even though sequences of similar length carry similar traits, the mobilome of rat gut bacteria are affected by human activities in that sewer rats have larger elements and more diverse large elements than pristine island rats. More than 1000 novel and not classified small sequences
LANCL1 (LanC-like protein 1) is related to the bacterial LanC (lanthionine synthetase C) family, which is involved in the biosynthesis of antimicrobial peptides. Highest expression levels of LANCL1 are found in testes and brain, two organs that exist behind blood-tissue barriers. In the mouse, the establishment of an impermeable blood-testis barrier occurs between day 10-16 post natal (pn). Differential display analysis showed that the expression level of LANCL1 mRNA in mouse testes was very low until day 16 pn, but increased gradually from day 16 pn to reach a maximum on days 22- 24 pn followed by a slight reduction from day 26 pn to adult animals. Thus, the expression of LANCL1 mRNA is initiated following the establishment of the blood-testis barrier. In situ hybridisation revealed that LANCL1 mRNA was induced in diplotene spermatocytes, which appear for the first time in mouse testes between days 18 and 20 pn, verifying the expression profile determined by differential display. LANCL1 mRNA level remained high in the meiotic division phase and in early round spermatids, but was down regulated in elongating spermatids and it was undetectable in step 9 elongating spermatids in stage IX (as defined by Russel et al., 1990). The steady decrease in expression level from round spermatids in stage I to elongating spermatids in stage IX suggested that LANCL1 mRNA was not transcribed in spermatids. LANCL1 expression in rat testes was initiated already in pachytene spermatocytes in stage IX, but otherwise similar to mouse
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.