Non-alcoholic fatty liver disease (NAFLD) is an emerging chronic liver disease that may lead to liver cirrhosis and hepatocellular carcinoma. We aimed to determine the association between the prevalence of metabolic syndrome (MetS) and NAFLD severity using semi-quantitative ultrasonography (US). A total of 614 participants were recruited from the community. NAFLD was evaluated according to the ultrasonographic Fatty Liver Indicator (US-FLI), which is a semi-quantitative liver ultrasound score. Insulin resistance was estimated with the homeostasis model assessment index for insulin resistance (HOMA-IR). NAFLD and MetS were found in 53.7 and 17.3% of the participants, respectively. Linear relationships were found between the severity of NAFLD and waist circumference, fasting glucose, HOMA-IR, triglycerides, HDL-C and blood pressure. After adjusting for confounding factors, i.e., body mass index and HOMA-IR, the odds ratios for MetS were 3.64 (95% confidence interval (CI): 1.5–8.83) for those with mild NAFLD and 9.4 (95% CI: 3.54–24.98) for those with moderate-to-severe NAFLD compared to those without NAFLD. The combination of the HOMA-IR and US-FLI scores better differentiated MetS than the HOMA-IR alone. In addition to obesity, the severity of NAFLD and the HOMA-IR both play important roles in MetS. Whether NAFLD is a component of MetS warrants further research.
The mode of dialyzer modulates the blood levels of myostatin. Higher myostatin is associated with lower muscle function. The use of myostatin assay in various clinical settings merits further investigation.
53% of lung cancer cell lines produce IL-6 mRNA and protein. Although IL-6 itself does not influence tumor cell proliferation in vitro, an association between IL-6 expression and tumor proliferation was found in vivo in nude and SCID mice. An anti-IL-6 reagent could provide a novel therapeutic strategy in patients with IL-6-producing lung tumors.
Sarcopenia, highly linked with fall, frailty, and disease burden, is an emerging problem in aging society. Higher protein intake has been suggested to maintain nitrogen balance. Our objective was to investigate whether pre-sarcopenia status was associated with lower protein intake. A total of 327 community-dwelling elderly people were recruited for a cross-sectional study. We adopted the multivariate nutrient density model to identify associations between low muscle mass and dietary protein intake. The general linear regression models were applied to estimate skeletal muscle mass index across the quartiles of total protein and vegetable protein density. Participants with diets in the lowest quartile of total protein density (<13.2%) were at a higher risk for low muscle mass (odds ratio (OR) 3.03, 95% confidence interval (CI) 1.37–6.72) than those with diets in the highest quartile (≥17.2%). Similarly, participants with diets in the lowest quartile of vegetable protein density (<5.8%) were at a higher risk for low muscle mass (OR 2.34, 95% CI 1.14–4.83) than those with diets in the highest quartile (≥9.4%). Furthermore, the estimated skeletal muscle mass index increased significantly across the quartiles of total protein density (p = 0.023) and vegetable protein density (p = 0.025). Increasing daily intakes of total protein and vegetable protein densities appears to confer protection against pre-sarcopenia status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.