Sarcopenia is a common impairment in the elderly population responsible for poor outcomes later in life; it can be caused by age-related alternations. Only a few strategies have been reported to reduce sarcopenia. Lactobacillus paracasei PS23 (LPPS23) has been reported to delay some age-related disorders. Therefore, here we investigated whether LPPS23 decelerates age-related muscle loss and its underlying mechanism. Female senescence-accelerated mouse prone-8 (SAMP8) mice were divided into three groups (n=6 each): non-aging (16-week-old), control (28-week-old), and PS23 (28-week-old) groups. The control and PS23 groups were given saline and LPPS23, respectively. We evaluated the effects of LPPS23 by analyzing body weight and composition, muscle strength, protein uptake, mitochondrial function, reactive oxygen species (ROS), antioxidant enzymes, and inflammation-related cytokines. LPPS23 significantly attenuated age-related decreases of muscle mass and strength. Compared to the control group, the non-aging and PS23 groups exhibited higher mitochondrial function, IL10, antioxidant enzymes, and protein uptake. Moreover, inflammatory cytokines and ROS were lower in the non-aging and PS23 groups than the control group. Taken together, LPPS23 extenuated sarcopenia progression during aging; this effect might have been enacted by preserving the mitochondrial function via reducing age-related inflammation and ROS and by retaining protein uptake in the SAMP8 mice.
Non-alcoholic fatty liver disease (NAFLD) is an emerging chronic liver disease that may lead to liver cirrhosis and hepatocellular carcinoma. We aimed to determine the association between the prevalence of metabolic syndrome (MetS) and NAFLD severity using semi-quantitative ultrasonography (US). A total of 614 participants were recruited from the community. NAFLD was evaluated according to the ultrasonographic Fatty Liver Indicator (US-FLI), which is a semi-quantitative liver ultrasound score. Insulin resistance was estimated with the homeostasis model assessment index for insulin resistance (HOMA-IR). NAFLD and MetS were found in 53.7 and 17.3% of the participants, respectively. Linear relationships were found between the severity of NAFLD and waist circumference, fasting glucose, HOMA-IR, triglycerides, HDL-C and blood pressure. After adjusting for confounding factors, i.e., body mass index and HOMA-IR, the odds ratios for MetS were 3.64 (95% confidence interval (CI): 1.5–8.83) for those with mild NAFLD and 9.4 (95% CI: 3.54–24.98) for those with moderate-to-severe NAFLD compared to those without NAFLD. The combination of the HOMA-IR and US-FLI scores better differentiated MetS than the HOMA-IR alone. In addition to obesity, the severity of NAFLD and the HOMA-IR both play important roles in MetS. Whether NAFLD is a component of MetS warrants further research.
H. pylori infection is positively associated with metabolic syndrome, especially in females. The causal relationship between H. pylori infection and metabolic syndrome warrants further investigation.
Not only were social events and public facilities closed temporarily due to the coronavirus disease 2019 (COVID‐19) pandemic, but health services also were affected greatly. In this commentary, the authors discuss how the national program of mammography screening in Taiwan was affected, even without known community‐acquired transmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.