In this study, a long carbon chain dimer acid is introduced into a nylon 6 structure and is copolymerized with different structural amines to produce amorphous nylon 6 by 4,4′-methylenebis(2-methylcyclohexylamine) (MMCA) in different copolymerization ratios. The effect of different structures and copolymerization ratios on the properties of nylon 6 is determined, along with the thermal properties, crystallinity, water absorption, dynamic mechanical properties, and optical properties. It is found that the melting point and the thermal cracking temperature Td10 of nylon 6 are respectively between 176 °C and 213 °C and 378 °C to 405 °C. The effect of introducing a bicyclohexane group containing a methyl side chain is greater than that of a meta-benzene ring, so COMM (synthesized by Caprolactam (C), dimer oleic acid (OA), and 4,4′-Methylenebis(2-methylcyclohexylamine) (MMCA)) has the lowest melting point, enthalpy, and crystallinity. As the copolymerization ratio increases, its thermal properties decrease. 10% is the lowest crystallinity. The amine structure containing a bicycloalkyl group has lower water absorption and a 10% copolymerization ratio gives the lowest water absorption. It contains the bicycloalkyl group, COM (synthesized by Caprolactam (C), dimer oleic acid (OA) and 4,4′-Methylenebis(cyclohexylamine) (MCA)), which has the highest loss modulus. The lowest loss modulus is noted for a copolymerization ratio of 7% and the value of tan δ increases as the copolymerization ratio increases. The introduction of nylon 6 with the bicycloalkyl groups, COMM and COM, significantly increases transparency. As the copolymerization ratio increases, the transparency increases and the haze decreases. The best optical properties are achieved for 10% copolymerization.
Continuous polycrystalline SiCN films with high nucleation density have been successfully deposited by using CH3NH2, as carbon source gas in an ECR-CVD reactor. Fom the kinetic point of view, using CH3NH2, as carbon source could provide more abundant active carbon species in the gas phase to enhance the carbon incorporation in the SiCN films. The compositions of the SiCN films analyzed from Rutherford Backscattering Spectroscopy showed that higher [CH3NH2,]/[SiH4] ratio led to higher carbon content in the films. Moreover, a lower carbon content was measured when the film was deposited at higher substrate temperature. The direct band gap of the aforementioned SiCN films determined using PzR is around 4.4 eV, indicating a wide band gap material for blue-UV optoelectronics.
In this research, a series of amorphous nylons 6 were prepared by introducing adipic acid and different structure amines into the copolymerization with caprolactam. The effects including thermal properties, crystallinity, dynamic mechanical properties, optical properties, and water absorption of different copolymerization structure and copolymerization ratio on the properties of nylon 6 were investigated. The results show the melting point and thermal cracking temperature Td 5 of nylon 6 are, respectively, between 179[Formula: see text]C and 217[Formula: see text]C and 278[Formula: see text]C to 336[Formula: see text]C. Nylon 6 structure introducing a methyl side chain is more effective than a meta-benzene ring, a meta-cycloalkyl, and bicycloalkyl groups, so CAMM and CAI have the lowest crystallinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.