To study the relationship between vascular endothelial growth factor (VEGF) and formation and repair of engineering bone, second-generation bone marrow stromal cells (BMSCs) of New Zealand white rabbits that were separated in vitro were transfected with VEGF 165 gene vectors by adenovirus to detect gene expressions. Transfected BMSCs and β-tricalcium phosphate material were complexed and implanted at the femoral injury sites of the study group (n = 12), and the control group (n = 12) were implanted with engineering bones that were not transfected with VEGF. Femoral recoveries of the two groups were observed on the 15th, 30th, 45th and 60th days, and their vascularization and ossification statuses were observed by immunohistochemical methods. The BMSCs transfected with VEGF highly expressed VEGF genes and excreted VEGF. The two groups both experienced increased vascularization and bone volume after implantation (t = 7.92, P<0.05), and the increases of the study group were significantly higher than those of the control group (t = 6.92, P<0.05). VEGF is clinically applicable because it can accelerate the formation and repair of engineering bone by promoting vascularization and ossification.
Complex systems, ranging from developing embryos to systems of locally communicating agents, display an apparent capability of “programmable” pattern formation: They reproducibly form target patterns, but those targets can be readily changed. A distinguishing feature of such systems is that their subunits are capable of information processing. Here, we explore schemes for programmable pattern formation within a theoretical framework, in which subunits process local signals to update their discrete state following logical rules. We study systems with different update rules, topologies, and control schemes, assessing their capability of programmable pattern formation and their susceptibility to errors. Only a fraction permits local organizers to dictate any target pattern, by transcribing temporal patterns into spatial patterns, reminiscent of the principle underlying vertebrate somitogenesis. An alternative scheme employing variable rules cannot reach all patterns but is insensitive to the timing of organizer inputs. Our results establish a basis for designing synthetic systems and models of programmable pattern formation closer to real systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.