Chaos-based image cipher has been widely investigated over the last decade or so to meet the increasing demand for real-time secure image transmission over public networks. In this paper, an improved diffusion strategy is proposed to promote the efficiency of the most widely investigated permutation-diffusion type image cipher. By using the novel bidirectional diffusion strategy, the spreading process is significantly accelerated and hence the same level of security can be achieved with fewer overall encryption rounds. Moreover, to further enhance the security of the cryptosystem, a plain-text related chaotic orbit turbulence mechanism is introduced in diffusion procedure by perturbing the control parameter of the employed chaotic system according to the cipher-pixel. Extensive cryptanalysis has been performed on the proposed scheme using differential analysis, key space analysis, various statistical analyses and key sensitivity analysis. Results of our analyses indicate that the new scheme has a satisfactory security level with a low computational complexity, which renders it a good candidate for real-time secure image transmission applications.
Despite the fact that automatic target recognition (ATR) in Synthetic aperture radar (SAR) images has been extensively researched due to its practical use in both military and civil applications, it remains an unsolved problem. The major challenges of ATR in SAR stem from severe data scarcity and great variation of SAR images. Recent work started to adopt convolutional neural networks (CNNs), which, however, remain unable to handle the aforementioned challenges due to their high dependency on large quantities of data. In this paper, we propose a novel deep convolutional learning architecture, called Multi-Stream CNN (MS-CNN), for ATR in SAR by leveraging SAR images from multiple views. Specifically, we deploy a multi-input architecture that fuses information from multiple views of the same target in different aspects; therefore, the elaborated multi-view design of MS-CNN enables it to make full use of limited SAR image data to improve recognition performance. We design a Fourier feature fusion framework derived from kernel approximation based on random Fourier features which allows us to unravel the highly nonlinear relationship between images and classes. More importantly, MS-CNN is qualified with the desired characteristic of easy and quick manoeuvrability in real SAR ATR scenarios, because it only needs to acquire real-time GPS information from airborne SAR to calculate aspect differences used for constructing testing samples. The effectiveness and generalization ability of MS-CNN have been demonstrated by extensive experiments under both the Standard Operating Condition (SOC) and Extended Operating Condition (EOC) on the MSTAR dataset. Experimental results have shown that our proposed MS-CNN can achieve high recognition rates and outperform other state-of-the-art ATR methods.
Introduction Breast cancer, one of the most common health threats to females worldwide, has always been a crucial topic in the medical field. With the rapid development of digital pathology, many scholars have used AI-based systems to classify breast cancer pathological images. However, most existing studies only stayed on the binary classification of breast lesions (normal vs tumor or benign vs malignant), far from meeting the clinical demand. Therefore, we established a multi-class classification system of breast digital pathology images based on AI, which is more clinically practical than the binary classification system. Methods In this paper, we adopted a two-stage architecture based on deep learning method and machine learning method for the multi-class classification (normal tissue, benign lesion, ductal carcinoma in situ, and invasive carcinoma) of breast digital pathological images. Results The proposed approach achieved an overall accuracy of 86.67% at patch-level. At WSI-level, the overall accuracies of our classification system were 88.16% on validation data and 90.43% on test data. Additionally, we used two public datasets, the BreakHis and BACH, for independent verification. The accuracies our model obtained on these two datasets were comparable to related publications. Furthermore, our model could achieve accuracies of 85.19% on multi-classification and 96.30% on binary classification (non-malignant vs malignant) using pathology images of frozen sections, which was proven to have good generalizability. Then, we used t-SNE for visualization of patch classification efficiency. Finally, we analyzed morphological characteristics of patches learned by the model. Conclusion The proposed two-stage model could be effectively applied to the multi-class classification task of breast pathology images and could be a very useful tool for assisting pathologists in diagnosing breast cancer.
To reduce reliance on synthetic nitrogen (N) fertilizer and sustain food production, replacing synthetic N fertilizer with animal manure as an effective method is widely used. However, the effects of replacing synthetic N fertilizer with animal manure on crop yield and nitrogen use efficiency (NUE) remain uncertain under varying fertilization management practices, climate conditions, and soil properties. Here, we performed a meta-analysis of wheat (Triticum aestivum L.), maize (Zea mays L.), and rice (Oryza sativa L.) based on 118 published studies conducted in China. Overall, the results indicated that substituting synthetic N fertilizer with manure increased yield by 3.3%−3.9% for the three grain crops and increased NUE by 6.3%−10.0%. Crop yields and NUE did not significantly increase at a low N application rate (≤120 kg ha−1) or high substitution rate (>60%). Yields and NUE values had higher increases for upland crops (wheat and maize) in temperate monsoon climate/temperate continental climate regions with less average annual rainfall (AAR) and lower mean annual temperature (MAT), while rice had higher increases in subtropical monsoon climate regions with more AAR and higher MAT. The effect of manure substitution was better in soil with low organic matter and available phosphorus. Our study shows that the optimal substitution rate was 44% and the total N fertilizer input cannot be less than 161 kg ha−1 when substituting synthetic N fertilizer with manure. Moreover, site‐specific conditions should also be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.