Electrochemical reduction of carbon dioxide (CO2) to ethanol is a promising strategy for global warming mitigation and resource utilization. However, due to the intricacy of C─C coupling and multiple proton–electron transfers, CO2‐to‐ethanol conversion remains a great challenge with low activity and selectivity. Herein, it is reported a P‐doped graphene aerogel as a self‐supporting electrocatalyst for CO2 reduction to ethanol. High ethanol Faradaic efficiency (FE) of 48.7% and long stability of 70 h are achieved at −0.8 VRHE. Meanwhile, an outstanding ethanol yield of 14.62 µmol h−1 cm−2 can be obtained, outperforming most reported electrocatalysts. In situ Raman spectra indicate the important role of adsorbed *CO intermediates in CO2‐to‐ethanol conversion. Furthermore, the possible active sites and optimal pathway for ethanol formation are revealed by density functional theory calculations. The graphene zigzag edges with P doping enhance the adsorption of *CO intermediate and increase the coverage of *CO on the catalyst surface, which facilitates the *CO dimerization and boosts the EtOH formation. In addition, the hierarchical pore structure of P‐doped graphene aerogels exposes abundant active sites and facilitates mass/charge transfer. This work provides inventive insight into designing metal‐free catalysts for liquid products from CO2 electroreduction.
Developing a simple and direct approach for interfacing a sensor and a target analyte is of great interest for fields such as medical diagnosis, threat detection, food quality control, and environmental monitoring. Gloves provide a unique interface for sensing applications. Here, we show for the first time the development of wearable carbon nanotube (CNT)-based amperometric biosensors painted onto gloves as a new sensing platform, used here for the determination of lactate. Three sensor types were studied, configured as: two CNT electrodes; one CNT electrode, and an Ag/AgCl electrode, and two CNT electrodes and an Ag/AgCl electrode. The sensors are constructed by painting the electrodes using CNT or Ag/AgCl inks. By immobilizing lactate oxidase onto the CNT-based working electrodes, the sensors show sensitive detections of lactate. Comparison of sensor performance shows that a combination of CNT and Ag/AgCl is necessary for highly sensitive detection. We anticipate that these findings could open exciting avenues for fundamental studies of wearable bioelectronics, as well as practical applications in fields such as healthcare and defense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.