A rational yet scalable solution phase method has been established, for the first time, to obtain n-type Bi(2)Te(3) ultrathin nanowires with an average diameter of 8 nm in high yield (up to 93%). Thermoelectric properties of bulk pellets fabricated by compressing the nanowire powder through spark plasma sintering have been investigated. Compared to the current commercial n-type Bi(2)Te(3)-based bulk materials, our nanowire devices exhibit an enhanced ZT of 0.96 peaked at 380 K due to a significant reduction of thermal conductivity derived from phonon scattering at the nanoscale interfaces in the bulk pellets, which corresponds to a 13% enhancement compared to that of the best n-type commercial Bi(2)Te(2.7)Se(0.3) single crystals (~0.85) and is comparable to the best reported result of n-type Bi(2)Te(2.7)Se(0.3) sample (ZT = 1.04) fabricated by the hot pressing of ball-milled powder. The uniformity and high yield of the nanowires provide a promising route to make significant contributions to the manufacture of nanotechnology-based thermoelectric power generation and solid-state cooling devices with superior performance in a reliable and a reproducible way.
Improving energy/fuel efficiency by converting waste heat into electricity using thermoelectric materials is of great interest due to its simplicity and reliability. However, many thermoelectric materials are composed of either toxic or scarce elements. Here, we report the experimental realization of using nontoxic and abundant copper zinc tin sulfide (CZTS) nanocrystals for potential thermoelectric applications. The CZTS nanocrystals can be synthesized in large quantities from solution phase reaction and compressed into robust bulk pellets through spark plasma sintering and hot press while still maintaining nanoscale grain size inside. Electrical and thermal measurements have been performed from 300 to 700 K to understand the electron and phonon transports. Extra copper doping during the nanocrystal synthesis introduces a significant improvement in the performance.
We present a design principle to develop new categories of telluride-based thermoelectric nanowire heterostructures through rational solution-phase reactions. The catalyst-free synthesis yields Te−Bi 2 Te 3 "barbell" nanowire heterostructures with a narrow diameter and length distribution as well as a rough control over the density of the hexagonal Bi 2 Te 3 plates on the Te nanowire bodies, which can be further converted to other telluride-based compositionalmodulated nanowire heterostructures such as PbTe−Bi 2 Te 3 . Initial characterizations of the hot-pressed nanostructured bulk pellets of the Te−Bi 2 Te 3 heterostructure show a largely enhanced Seebeck coefficient and greatly reduced thermal conductivity, which lead to an improved thermoelectric figure of merit. This approach opens up new platforms to investigate the phonon scattering and energy filtering.
Photocatalytic H 2 O 2 evolution through two-electron oxygen reduction has attracted wide attention as an environmentally friendly strategy compared with the traditional anthraquinone or electrocatalytic method. Herein, a biomimetic leaf-vein-like g-C 3 N 4 as an efficient photocatalyst for H 2 O 2 evolution is reported, which owns tenable band structure, optimized charge transfer, and selective two-electron O 2 reduction. The mechanism for the regulation of band structure and charge transfer is well studied by combining experiments and theoretical calculations. The H 2 O 2 yield of CN4 (287 µmol h −1) is about 3.3 times higher than that of pristine CN (87 µmol h −1), and the apparent quantum yield for H 2 O 2 evolution over CN4 reaches 27.8% at 420 nm, which is much higher than that for many other current photocatalysts. This work not only provides a novel strategy for the design of photocatalyst with excellent H 2 O 2 evolution efficiency, but also promotes deep understanding for the role of defect and doping sites on photocatalytic activity.
This document includes the details of the experiments and the procedures for the theoretical modeling of the thermoelectric properties. Besides, the supplementary Figure S1 shows the XRD pattern of the Ag 2 Te nanowires synthesized with stoichiometric amount of Ag precursor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.