In this paper, we review recent advances in the development of flexible thermoelectric materials and devices for wearable human body-heat energy harvesting applications. We identify various emerging applications such as specialized medical sensors where wearable thermoelectric generators can have advantages over other energy sources. To meet the performance requirements for these applications, we provide detailed design guides regarding the material properties, device dimensions, and gap fillers by performing realistic device simulations with important parasitic losses taken into account. For this, we review recently emerging flexible thermoelectric materials suited for wearable applications, such as polymer-based materials and screen-printed paste-type inorganic materials. A few examples among these materials are selected for thermoelectric device simulations in order to find optimal design parameters for wearable applications. Finally we discuss the feasibility of scalable and cost-effective manufacturing of thermoelectric energy harvesting devices with desired dimensions. 1
This document includes the details of the experiments and the procedures for the theoretical modeling of the thermoelectric properties. Besides, the supplementary Figure S1 shows the XRD pattern of the Ag 2 Te nanowires synthesized with stoichiometric amount of Ag precursor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.