Background: Wuzhimaotao (the dry root of Ficus hirta) is used as both medicine and food ingredient by the locals in areas around Nanling Mountains of China. Due to its very similar external morphologies with Duanchangcao (the root of Gelsemium elegans, which contains gelsemine that is extremely neurotoxic) and the associated growth of these two plants, incidents of food poisoning and even death frequently occur, resulting from the misuse of Duanchangcao as Wuzhimaotao. The aim of this study is to develop a fast, even, on-spot approach to identification of Wuzhimaotao. Methods: We used DNA barcode-based recombinase polymerase amplification (BAR-RPA) with species–specific primers targeting the internal transcribed spacer (ITS) region of the rDNA of F. hirta. BAR-RPA reaction time and temperature were optimized and the specificity and sensitivity of BAR-RPA species–specific primers were assessed. Results: This technique showed a high specificity and sensitivity to amplify the genomic DNA of F. hirta and allowed for rapid amplification (within 15 min) of the ITS region under a constant and mild temperature range of 37–42 °C without using thermocyclers. Conclusions: The BAR-RPA assay with a fast DNA extraction protocol provides a simple, energy-saving, and rapid method for identification of Wuzhimaotao in both laboratory and field settings.
Background Smuggling and illegal trade of pangolins and their scales has drastically reduced the wild population of pangolins. Accurate species identification is currently in urgent need as a powerful weapon for combating pangolin smuggling and trade and conserving the already endangered pangolin species. Aim of the study To develop an efficient method based on DNA mini-barcodes for accurate pangolin species identification and authentication of processed pangolin scales against the non-target species. Materials and methods The primers for amplifying the DNA mini-barcodes were designed based on cytochrome C oxidase subunit I (COI) gene fragments. The mini-barcodes were compared with the two universal barcodes (COI and Cytb) for performance in pangolin species identification by calculating the Kimura-2-parameter (K2P) distance, assessing the clustering dendrogram, and analyzing the BLAST similarity and barcoding gap. The accuracy of the three barcodes was also compared for authentication of pangolin scales against non-target species. Results Comparison of the three barcodes showed that the mini-barcode form COI had the highest amplification success rate (100%) and high variable sites (40.0%), with the ratio of mean inter- to intraspecific distance ratio was 25 and a distinct DNA barcoding gap. In the neighbor-joining (NJ) tree constructed based on the mini-barcode regions, each species of the pangolin family formed an obvious clade respectively, and the clades were all separated from those of the non-target species, indicating that the genetic information in the mini-barcode was sufficient for species identification. Conclusion The DNA mini-barcodes based on COI gene fragments provide an effective and accurate method for identification of pangolin species and authentication of pangolin scale products.
A successful method for total DNA extraction from crude and processed pangolin scales was established. After pretreatment in the soaking solution for cleansing, the scales were prepared into fine powders and treated with PBS buffer containing 0.1% collagenase and 0.1% trypsin for 24 h, followed by digestion with proteinase K at 55°C for 120 h. Phenol-chloroform extraction was used to obtain the total DNA. PCR amplification for mitochondrial cytochrome b (cytb) gene was successful using the extracted DNA as the template, and sequencing of the amplified fragments confirmed Manis origin of the scale samples. With an efficiency up to 100%, this method is expected to provide a powerful tool in molecular identification of processed as well as crude pangolin scales. ABSTRAKKaedah berkesan untuk pengekstrakan DNA total daripada sisik tenggiling mentah dan terproses telah berjaya dihasilkan. Selepas pra-rawatan dengan cara merendam di dalam larutan untuk pembersihan, sisik disediakan dalam bentuk serbuk halus dan dirawat dengan penimbal PBS yang mengandungi 0.1% kolagenase dan tripsin 0.1% selama 24 jam diikuti penghadaman oleh proteinase K pada 55°C selama 120 jam. Pengekstrakan fenol-kloroform telah digunakan untuk mendapatkan DNA total. Amplifikasi PCR untuk gen mitokondria sitokrom b (cytb) telah berjaya dengan menggunakan ekstrak DNA sebagai templat dan penjujukan serpihan teramplifikasi membuktikan sampel sisik berasal daripada Manis. Dengan kadar kecekapan sehingga 100%, kaedah ini dijangka menjadi suatu alat berkesan untuk mengenal pasti molekul sisik terproses serta mentah tenggiling.
Background: Hepatocellular carcinoma (HCC) poses a growing threat to humans due to poor prognosis. Extract of stellera chamaejasme L. (ESC) is reported to inhibit metastasis of HCC. However, the underlying mechanism of ESC in regulating the progression of HCC needs to be further investigated. Methods: 3-(4, 5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure cell proliferation. Flow cytometry was employed to check cell apoptosis. Transwell assay was conducted to assess the abilities of cell migration and invasion. The protein levels of proliferating cell nuclear antigen, cleaved caspase 3 (c-caspase 3), E-cadherin, janus kinase 1 (JAK1), signal transducer and activator of transcription 3 (STAT3), and phosphorylated STAT3 were detected by Western blot. The interaction between miR-134-5p and JAK1 was predicted by starBase, which was verified by the dual-luciferase reporter assay and RNA pull-down assay. The messenger RNA levels of miR-134-5p and JAK1 were determined by quantitative real-time polymerase chain reaction. Results: The results showed that the higher concentration or the longer time treatment of ESC led to the lower survival rate of HCC cells. Besides, ESC induced apoptosis and impeded migration and invasion of HCC cells. Moreover, downregulation of miR-134-5p inverted the effects of ESC-mediated repression on HCC progression. Further studies indicated that miR-134-5p targeted the 3¢-untranslated region (3¢UTR) of JAK1 and reversed JAK1-mediated impacts on HCC progression. Simultaneously, ESC inactivated JAK1/STAT3 pathway by regulating the expression of miR-134-5p. Conclusion: ESC suppressed HCC progression by upregulating the expression of miR-134-5p and blocking JAK1/STAT3 pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.