In this paper, the SiC planar MOSFET with built-in reverse MOS-channel diode (SiC MCD-MOSFET) is investigated utilizing TCAD simulation tools. When the device is working as a freewheeling diode, the operation of the parasitic body diode is suppressed effectively due to the lower threshold voltage of the MCD. Therefore, the bipolar degradation issue can be completely solved. In addition, the SiC MCD-MOSFET is featuring superior dynamic characteristics. The input capacitance (CISS), reverse transfer capacitance (C RSS), gate charge (Q G) and gate-to-drain charge (Q GD) are reduced by a factor of ~2, ~7, ~2 and ~10, respectively, as compared to the conventional SiC MOSFET (SiC C-MOSFET). Combined with the slightly increased on-resistance (R ON), tremendously enhanced figures of merit (R ON ×Q G and R ON ×Q GD are decreased by a factor of 1.8 and 9, respectively) are obtained in the SiC MCD-MOSFET. The outstanding performance and easy-to-implement feature make the SiC MCD-MOSFET more attractive for further power electronic applications. Index Terms SiC planar MOSFETs, bipolar degradation, dynamic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.