Luminescence dating at the stratified prehistoric site of Attirampakkam, India, has shown that processes signifying the end of the Acheulian culture and the emergence of a Middle Palaeolithic culture occurred at 385 ± 64 thousand years ago (ka), much earlier than conventionally presumed for South Asia. The Middle Palaeolithic continued at Attirampakkam until 172 ± 41 ka. Chronologies of Middle Palaeolithic technologies in regions distant from Africa and Europe are crucial for testing theories about the origins and early evolution of these cultures, and for understanding their association with modern humans or archaic hominins, their links with preceding Acheulian cultures and the spread of Levallois lithic technologies. The geographic location of India and its rich Middle Palaeolithic record are ideally suited to addressing these issues, but progress has been limited by the paucity of excavated sites and hominin fossils as well as by geochronological constraints. At Attirampakkam, the gradual disuse of bifaces, the predominance of small tools, the appearance of distinctive and diverse Levallois flake and point strategies, and the blade component all highlight a notable shift away from the preceding Acheulian large-flake technologies. These findings document a process of substantial behavioural change that occurred in India at 385 ± 64 ka and establish its contemporaneity with similar processes recorded in Africa and Europe. This suggests complex interactions between local developments and ongoing global transformations. Together, these observations call for a re-evaluation of models that restrict the origins of Indian Middle Palaeolithic culture to the incidence of modern human dispersals after approximately 125 ka.
Floodplains, paleosols, and antecedent landforms near the apex of the Brahmaputra fan delta in north-central Bangladesh preserve cycles of fluvial sediment deposition, erosion and weathering. Together these landforms and their associated deposits comprise morphostratigraphic units that define the river's history and have influenced its channel position and avulsion behaviour through the Late Quaternary. Previously, temporal differentiation within these units has not been sufficient to decipher their sequence of deposition, an important step in understanding the spatial pattern of migration of the Brahmaputra River. Holocene units in this region are fairly well established by radiocarbon dating of in situ organic material, but pre-Holocene units are considered Pleistoceneaged if organic material is dated >48 000 year BP (the limit of radiocarbon dating) or the sediments are positioned beneath a prominent paleosol, interpreted as a buried soil horizon that developed during a previous sea level lowstand. In such cases, these morphostratigraphic units have been broadly interpreted as Pleistocene without knowing their absolute depositional ages or relative evolutionary chronology. Here we use detailed sediment analysis to better differentiate morphostratigraphic units at the Brahmaputra's avulsion node, establishing the sequence of deposition and subsequent weathering of these bodies. We then test this relative chronology by luminescence dating of the sands beneath these landform surfaces. This work provides the first absolute depositional age constraints of terrace sediments for the Middle to Late Pleistocene Brahmaputra River and upper Bengal basin. The luminescence ages are complemented by detailed compositional trends in the terrace deposits, including clay mineralogy and the degree of weathering. Together, these newly dated and carefully described morphostratigraphic units reflect eustasy-driven cycles of terrace development by way of highstand floodplain deposition and subsequent lowstand exposure and weathering, along with active tectonic deformation. Defining this Late Quaternary history of terrace development and position of the Brahmaputra River is a first step toward an integrated understanding of basin and delta evolution over multiple glacioeustatic cycles and tectonically relevant timescales.
Geomorphic analysis and optically stimulated luminescence (OSL) ages from undated Lake Agassiz beaches and adjacent fluvial sediments on Riding Mountain in Manitoba provide insight into their early history. New OSL ages of 14.5±2.4 and 13.4±0.7 ka on the oldest (Herman to Norcross) beaches of Lake Agassiz near the Canada-U.S. border indicate that the Laurentide Ice Sheet (LIS) retreated from that part of the Agassiz basin by ~14.5 ka. To the north along Riding Mountain, the Herman strandlines are absent, and OSL ages on the oldest beach there average 12.9 ka, which links it to the younger Norcross-Tintah strandlines. In adjacent Riding Mountain, OSL ages and geomorphological relationships of a large abandoned glacial spillway >200 m above the oldest beaches of Lake Agassiz indicate that this channel predates retreat of the LIS and formation of beaches in this part of the Agassiz basin, with ice remaining in this area until after 14.5 ka. OSL ages on the Gimli beach 170 km to the east are >3000 yr older than conventional assignments, suggesting that it formed during the Moorhead low-water phase 12.8–10.6 ka. Luminescence ages support the conclusion that the Campbell beach formed ~10.9 ka near the end of the Moorhead low-water phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.