Deep eutectic solvents (DESs) are a potentially high-value lignin extraction methodology. DESs prepared from choline chloride (ChCl) and three hydrogen-bond donors (HBD)—lactic acid (Lac), glycerol, and urea—were evaluated for isolation of willow (Salix matsudana cv. Zhuliu) lignin. DESs types, mole ratio of ChCl to HBD, extraction temperature, and time on the fractionated DES-lignin yield demonstrated that the optimal DES-lignin yield (91.8 wt % based on the initial lignin in willow) with high purity of 94.5% can be reached at a ChCl-to-Lac molar ratio of 1:10, extraction temperature of 120 °C, and time of 12 h. Fourier transform infrared spectroscopy (FT-IR) , 13C-NMR, and 31P-NMR showed that willow lignin extracted by ChCl-Lac was mainly composed of syringyl and guaiacyl units. Serendipitously, a majority of the glucan in willow was preserved after ChCl-Lac treatment.
The advent of high frequency communication era presents new challenges for further development of dielectric polymer materials. In the field of communication, efficient signal transmission is critical. The lower the dielectric constant of the dielectric material used, the lower the signal delay and the higher the signal fidelity. The preparation of polymer materials with low dielectric constant or reduce the dielectric constant of polymer materials becomes a key research topic. Summarizing past progress and providing perspective, this paper primarily discusses the intrinsic low dielectric polymers, fluorine doped low dielectric polymers, and microporous low dielectric polymers, while predicting the research trend of low dielectric materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.