A deficiency of the protein dystrophin has recently been shown to be the probable cause of Duchenne's muscular dystrophy. We sought to determine the relation between the clinical phenotype and the status of dystrophin in muscle-biopsy specimens from 103 patients with various neuromuscular disorders. We found very low levels (less than 3 percent of normal levels) or no dystrophin in the severe Duchenne phenotype (35 of 38 patients), low concentrations of dystrophin in the intermediate (outlier) phenotype (4 of 7), and dystrophin of abnormal molecular weight in the mild Becker phenotype (12 of 18). Normal levels of dystrophin of normal molecular weight were found in nearly all the patients (38 of 40) with 20 other neuromuscular disorders we studied. These data show the clinical consequences of both quantitative alterations (in Duchenne's and intermediate dystrophy) in a single protein. The biochemical assay for dystrophin should prove helpful in delineating myopathies that overlap clinically with Duchenne's and Becker's dystrophies, and it shows promise as an accurate diagnostic tool.
Purpose
Photoreceptor apoptosis and resultant visual deficits occur in humans and animals with inherited, and disease-, injury- and chemical-induced retinal degeneration. Our aims were three-fold: 1) to determine the kinetics of rod apoptosis and Ca2+ overload in Pde6brd1 mice and developmentally lead-exposed rats, 2) to establish a pathophysiologically-relevant model of Ca2+ overload/rod-selective apoptosis in isolated rat retina and 3) to examine different mechanistic based neuroprotective strategies that would abrogate or mollify rod Ca2+ overload/apoptosis.
Methods
Retinal morphometry and elemental calcium content ([Ca]) determined the kinetics of rod apoptosis and Ca2+ overload. A multiparametric analysis of apoptosis including rod [Ca], a live/dead assay, rod oxygen consumption, cytochrome c immunoblots and caspase assays was combined with pharmacological studies of an isolated rat retinal model of rod-selective Ca2+ overload/apoptosis.
Results
Ca2+ overload preceded rod apoptosis in mice and rats, although the extent and kinetics in each differed significantly. The isolated rat model of rod Ca2+ overload/apoptosis showed that blockade of Ca2+ entry through rod cGMP-activated channels with L-cis diltiazem was partially neuroprotective, whereas blockade of Ca2+ entry into rods through L-type Ca2+ channels with D-cis diltiazem or verapamil provided no protection. Inhibition of the mitochondrial Na+/Ca2+ exchanger with D-cis diltiazem provided no protection. CsA and NIM811, mitochondrial permeability transition pore (mPTP) inhibitors, blocked all Ca2+-induced apoptosis, whereas the caspase-3 inhibitor DEVD-fmk only blocked the downstream cytochrome c-induced apoptosis.
Conclusions
The successful pharmacological neuroprotective strategies for rod Ca2+ overload/apoptosis targeted the rod cGMP-activated channels or mPTP, but not the rod L-type Ca2+ channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.