We present high-resolution imaging fibers made from low-cost commercially available fiber preforms manufactured for the telecommunications industry. Our fabrication method involves multi-stacking arrays of different sized cores in order to suppress core-to-core crosstalk whilst building up a large array of cores. One of the fibers, based on a square array of cores, has comparable imaging performance to commercial imaging fibers but without the need for exceptionally high refractive index contrasts, and will enable the development of economically viable single-use disposable imaging fibers.
Physiological sensing deep in tissue remains a clinical challenge. Here a flexible miniaturised sensing optrode providing a platform to perform minimally invasive
in vivo in situ
measurements is reported. Silica microspheres covalently coupled with a high density of ratiometrically configured fluorophores were deposited into etched pits on the distal end of a 150 µm diameter multicore optical fibre. With this platform, photonic measurements of pH and oxygen concentration with high precision in the distal alveolar space of the lung are reported. We demonstrated the phenomenon that high-density deposition of carboxyfluorescein covalently coupled to silica microspheres shows an inverse shift in fluorescence in response to varying pH. This platform delivered fast and accurate measurements (±0.02 pH units and ±0.6 mg/L of oxygen), near instantaneous response time and a flexible architecture for addition of multiple sensors.
Purpose
The relentless rise in antimicrobial resistance is a major societal challenge and requires, as part of its solution, a better understanding of bacterial colonization and infection. To facilitate this, we developed a highly efficient no-wash red optical molecular imaging agent that enables the rapid, selective, and specific visualization of Gram-positive bacteria through a bespoke optical fiber–based delivery/imaging endoscopic device.
Methods
We rationally designed a no-wash, red, Gram-positive-specific molecular imaging agent (Merocy-Van) based on vancomycin and an environmental merocyanine dye. We demonstrated the specificity and utility of the imaging agent in escalating in vitro and ex vivo whole human lung models (n = 3), utilizing a bespoke fiber–based delivery and imaging device, coupled to a wide-field, two-color endomicroscopy system.
Results
The imaging agent (Merocy-Van) was specific to Gram-positive bacteria and enabled no-wash imaging of S. aureus within the alveolar space of whole ex vivo human lungs within 60 s of delivery into the field-of-view, using the novel imaging/delivery endomicroscopy device.
Conclusion
This platform enables the rapid and specific detection of Gram-positive bacteria in the human lung.
The fabrication of fluorescence-based pH sensors, embedded into etched pits of an optical fibre via highly controllable and spatially selective photo-polymerisation is described and the sensors validated.
Using the shifted-excitation Raman difference spectroscopy technique and an optical fibre featuring a negative curvature excitation core and a coaxial ring of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.