A computational sensorimotor model of target capture behavior by the echolocating bat, Eptesicus fuscus, was developed to understand the detection, localization, tracking, and interception of insect prey in a biological sonar system. This model incorporated acoustics, target localization processes, flight aerodynamics, and target capture planning to produce model trajectories replicating those observed in behavioral insect capture trials. Estimates of target range were based on echo delay, azimuth on the relative intensity of the echo at the two ears, and elevation on the spectral pattern of the sonar return in a match/mismatch process. Flapping flight aerodynamics was used to produce realistic model trajectories. Localization in all three spatial dimensions proved necessary to control target tracking and interception for an adequate model of insect capture behavior by echolocating bats. Target capture using maneuvering flight was generally successful when the model's path was controlled by a planning process that made use of an anticipatory internal simulation, while simple homing was successful only for targets directly ahead of the model bat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.