High-Intensity Focused Ultrasound (HIFU) therapy provides a non-invasive technique with which to destroy cancerous tissue without using ionizing radiation. To drive large singleelement HIFU transducers, ultrasound transmitters capable of delivering high powers at relevant frequencies are required. The acoustic power delivered to a transducers focal region will determine the treated area, and due to safety concerns and intervening layers of attenuation, control of this output power is critical.A typical setup involves large inefficient linear power amplifiers to drive the transducer. Switched mode transmitters allow for a more compact drive system with higher efficiencies, with multi-level transmitters allowing control over the output power. Real-time monitoring of power delivered can avoid damage to the transducer and injury to patients due to over treatment, and allow for precise control over the output power.This study demonstrates a transformer-less, high power, switched mode transmit transmitter based on Gallium-Nitride (GaN) transistors that is capable of delivering peak powers up to 1.8 kW at up to 600 Vpp, while operating at frequencies from DC to 5 MHz. The design includes a 12 bit 16 MHz floating Current/Voltage (I-V) measurement circuit to allow real-time high-side monitoring of the power delivered to the transducer allowing use with multi-element transducers.
High-Intensity Focussed Ultrasound (HIFU) techniques make use of ultrasound transducers capable of delivering high powers to be delivered at high frequencies. Real-time monitoring of power delivered can avoid damage to the transducer and injury to patients due to overexposure. This paper demonstrates the real-time current and voltage monitoring capabilities of a new Gallium-Nitride (GaN) based switched mode transmit pulser developed for the University of Leeds High-Intensity Focussed Ultrasound Array Research Platform (HIFUARP) system, which uses a novel approach of using an Analog Front End (AFE) floating on the transmitter output to provide high bandwidth current measurement.
Microbubbles are used as contrast agents in clinical ultrasound for Left Ventricular Opacification (LVO) and perfusion imaging. They are also the subject of promising research in therapeutics as a drug delivery mechanism or for sonoporation and co-administration. For maximum efficacy in these applications, it is important to understand the acoustic characteristics of the administered microbubbles. Despite this, there is significant variation in the experimental procedures and equipment used to measure the acoustic properties of microbubble populations. A chamber was designed to facilitate acoustic characterisation experiments and was manufactured using additive manufacturing techniques. The design has been released to allow wider uptake in the research community. The efficacy of the chamber for acoustic characterisation has been explored with an experiment to measure the scattering of SonoVue® microbubbles at the fundamental frequency and second harmonic under interrogation from emissions in the frequency range of 1.6 to 6.4 MHz. The highest overall scattering values were measured at 1.6 MHz and decreased as the frequency increased, a result which is in agreement with previously published measurements. Statistical analysis of the acoustic scattering measurements have been performed and a significant difference, at the 5% significance level, was found between the samples containing contrast agent and the control sample containing only deionised water. These findings validate the proposed design for measuring the acoustic scattering characteristics of ultrasound contrast agents.
Within the Ultrasound Array Research Platform (UARP) open research system project, imaging and high-intensity focussed ultrasound (HIFU) implementations are used independently for diagnostic and therapeutic research respectively. In this paper, the hardware of each system remains unmodified, but the timing and control subsystems present on both implementations are used to control the discrete imaging and therapy systems in a precisely synchronised manner.Also presented is software interface that has been developed to allow any number of UARP systems to be used as one unified platform. The simple syntax of the software interface eases development of user code that controls ultrasound experiments, whilst preserving the individual capabilities of each the systems and leaving advanced control parameters exposed for complex use cases.The techniques discussed in this paper will enable future research into the development of advanced multi-mode sequencing techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.