Linkage analysis was used to search the genome for chromosomal regions harboring familial Alzheimer's disease genes. Markers on chromosome 14 gave highly significant positive lod scores in early-onset non-Volga German kindreds; a Zmax of 9.15 (theta = 0.01) was obtained with the marker D14S43 at 14q24.3. One early-onset family yielded a lod score of 4.89 (theta = 0.0). When no assumptions were made about age-dependent penetrance, significant results were still obtained (Zmax = 5.94, theta = 0.0), despite the loss of power to detect linkage under these conditions. Results for the Volga German families were either negative or nonsignificant for markers in this region. Thus, evidence indicates a familial Alzheimer's disease locus on chromosome 14.
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurological disorder caused by the expansion of a CAG repeat encoding a polyglutamine tract. Work presented here describes the behavioral and neuropathological course seen in mutant SCA1 transgenic mice. Behavioral tests indicate that at 5 weeks of age mutant mice have an impaired performance on the rotating rod in the absence of deficits in balance and coordination. In contrast, these mutant SCA1 mice have an increased initial exploratory behavior. Thus, expression of the mutant SCA1 allele within cerebellar Purkinje cells has divergent effects on the motor behavior of juvenile animals: a compromise of rotating rod performance and a simultaneous enhancement of initial exploratory activity. With age, these animals develop incoordination with concomitant progressive Purkinje neuron dendritic and somatic atrophy but relatively little cell loss. Therefore, the eventual development of ataxia caused by the expression of a mutant SCA1 allele is not the result of cell death per se, but the result of cellular dysfunction and morphological alterations that occur before neuronal demise.
We have cloned genomic DNA encoding a non-HLA-A, -B, -C class I gene located within a HindlIlgenerated restriction fragment of 6.0 kilobase pairs. This gene, designated HLA-6.0, is as homologous to HLA-A and HLA-B as they are to each other. The HLA class I protein encoded by HLA-6.0 is similar in organization to the HLA-A-, -B-, and -C-encoded proteins except that an in-frame termination codon prevents translation of a majority of the cytoplasmic region of the HLA-6.0 polypeptide. Moreover, the promoter region of HLA-6.0 resembles the promoter region of a Qa region gene. These structural features of HLA-6.0 suggest that this non-
Many neurodegenerative diseases are caused by gain-of-function mechanisms in which the disease-causing protein is altered, becomes toxic to the cell, and aggregates. Among these 'proteinopathies' are Alzheimer's and Parkinson's disease, prion disorders and polyglutamine diseases. Members of this latter group, also known as triplet repeat diseases, are caused by the expansion of unstable CAG repeats coding for glutamine within the respective proteins. Spinocerebellar ataxia type 1 (SCA1) is one such disease, characterized by loss of motor coordination due to the degeneration of cerebellar Purkinje cells and brain stem neurons. In SCA1 and several other polyglutamine diseases, the expanded protein aggregates into nuclear inclusions (NIs). Because these NIs accumulate molecular chaperones, ubiquitin and proteasomal subunits--all components of the cellular protein re-folding and degradation machinery--we hypothesized that protein misfolding and impaired protein clearance might underlie the pathogenesis of polyglutamine diseases. Over-expressing specific chaperones reduces protein aggregation in transfected cells and suppresses neurodegeneration in invertebrate animal models of polyglutamine disorders. To determine whether enhancing chaperone activity could mitigate the phenotype in a mammalian model, we crossbred SCA1 mice with mice over-expressing a molecular chaperone (inducible HSP70 or iHSP70). We found that high levels of HSP70 did indeed afford protection against neurodegeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.