Migratory ungulates are thought to be declining globally because their dependence on large landscapes renders them highly vulnerable to environmental change. Yet recent studies reveal that many ungulate species can adjust their migration propensity in response to changing environmental conditions to potentially improve population persistence. In addition to the question of whether to migrate, decisions of where and when to migrate appear equally fundamental to individual migration tactics, but these three dimensions of plasticity have rarely been explored together. Here, we expand the concept of migratory plasticity beyond individual switches in migration propensity to also include spatial and temporal adjustments to migration patterns. We develop a novel typological framework that delineates every potential change type within the three dimensions, then use this framework to guide a literature review. We discuss broad patterns in migratory plasticity, potential drivers of migration change, and research gaps in the current understanding of this trait. Our result reveals 127 migration change events in direct response to natural and human-induced environmental changes across 27 ungulate species. Species that appeared in multiple studies showed multiple types of change, with some exhibiting the full spectrum of migratory plasticity. This result highlights that multidimensional migratory plasticity is pervasive in ungulates, even as the manifestation of plasticity varies case by case. However, studies thus far have rarely been able to determine the fitness outcomes of different types of migration change, likely due to the scarcity of long-term individual-based demographic monitoring as well as measurements encompassing a full behavioral continuum and environmental gradient for any given species. Recognizing and documenting the full spectrum of migratory plasticity marks the first step for the field of migration ecology to employ quantitative methods, such as reaction norms, to predict migration change along environmental gradients. Closer monitoring for changes in migratory propensity, routes, and timing may improve the efficacy of conservation strategies and management actions in a rapidly changing world.
Carnivore predation on livestock is a complex management and policy challenge, yet it is also intrinsically an ecological interaction between predators and prey. Human-wildlife interactions occur in socioecological systems in which human and environmental processes are closely linked. However, underlying human-wildlife conflict and key to unpacking its complexity are concrete and identifiable ecological mechanisms that lead to predation events. To better understand how ecological theory accords with interactions between wild predators and domestic prey, we developed a framework to describe ecological drivers of predation on livestock. We based this framework on foundational ecological theory and current research on interactions between predators and domestic prey. We used this framework to examine ecological mechanisms (e.g., density-mediated effects, behaviorally mediated effects, and optimal foraging theory) through which specific management interventions operate, and we analyzed the ecological determinants of failure and success of management interventions in 3 case studies: snow leopards (Panthera uncia), wolves (Canis lupus), and cougars (Puma concolor). The varied, context-dependent successes and failures of the management interventions in these case studies demonstrated the utility of using an ecological framework to ground research and management of carnivore-livestock conflict. Mitigation of human-wildlife conflict appears to require an understanding of how fundamental ecological theories work within domestic predator-prey systems.
The study of animal space use is fundamental to effective conservation and management of wildlife populations and habitats in a rapidly changing world, yet many species remain poorly described. Such is the case for the spatial ecology of the Vicuña–a medium-sized wild camelid that plays a critical role, both as a consumer and as prey, in the high Andean food web. We studied patterns of space use of 24 adult female vicuñas from April 2014 to February 2017 at the southern edge of its range. Vicuñas showed strong fidelity to their home range locations across the study period and shared large portions of their home ranges with vicuñas from other family groups. Vicuña home ranges in our study were considerably larger than previous estimates across the range of the species. Variation in environmental and terrain factors and the associated risk of predation affected vicuña diel migration distance but not home range size or overlap. Our study offers new ecological insights into vicuña space use that can inform conservation and management efforts of vicuñas and other social ungulates.
Thunderstorms and associated wind disturbance are becoming more common globally with a predicted 6% increase of tropical storms over the last three decades in Central America, compared to records from the 1970s (Brooks, 2013;ECLAC, 2018). In tropical landscapes, wind disturbance forms gaps in the forest canopy, altering forest structure (Marra et al., 2014;Peterson, 2007). For example, treefall vulnerability is a product of tree damage and mortality interacting across individual and community scales. Large diameter AbstractOn 19 May 2018, a microburst caused 600 isolated forest gaps in a Costa Rican tropical forest. We surveyed fallen and standing trees within gaps to determine whether certain variables are associated with treefalls. Our results highlight considerations for future research to understand the impacts of microbursts in tropical forests. Abstract in Spanish is available with online only
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.