In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation to use other genus names, including teleomorphs, for species nested within this clade, and preserve the application of the name Fusarium in the way it has been used for almost a century. Due to recent changes in the International Code of Nomenclature for algae, fungi, and plants, this is an urgent matter that requires community attention. The alternative is to break the longstanding concept of Fusarium into nine or more genera, and remove important taxa such as those in the F. solani species complex from the genus, a move we believe is unnecessary. Here we present taxonomic and nomenclatural proposals that will preserve established research connections and facilitate communication within and between research communities, and at the same time support strong scientific principles and good taxonomic practice.
Members of the Fusarium graminearum species complex are important cereal pathogens worldwide and belong to one of at least nine phylogenetically distinct species. We examined 298 strains of the F. graminearum species complex collected from wheat or barley in Japan to determine the species and trichothecene chemotype. Phylogenetic analyses and species-diagnostic polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLPs) revealed the presence and differential distribution of F. graminearum sensu stricto (s. str.) and F. asiaticum in Japan. F. graminearum s. str. is predominant in the north, especially in the Hokkaido area, while F. asiaticum is predominant in southern regions. In the Tohoku area, these species co-occurred. Trichothecene chemotyping of all strains by multiplex PCR revealed significantly different chemotype compositions of these species. All 50 strains of F. graminearum s. str. were of a 15- or 3-acetyl deoxynivalenol type, while 173 (70%) out of 246 strains of F. asiaticum were of a nivalenol type. The possibility of gene flow between the two species was investigated by use of 15 PCR-RFLP markers developed in this study. However, no obvious hybrids were detected from 98 strains examined, including strains collected from regions where both species co-occur.
Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. Previously (Geiser et al. 2013; Phytopathology 103:400-408. 2013), the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani Species Complex (FSSC). Subsequently, this concept was challenged by one research group (Lombard et al. 2015 Studies in Mycology 80: 189-245) who proposed dividing Fusarium into seven genera, including the FSSC as the genus Neocosmospora, with subsequent justification based on claims that the Geiser et al. (2013) concept of Fusarium is polyphyletic (Sandoval-Denis et al. 2018; Persoonia 41:109-129). Here we test this claim, and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species recently described as Neocosmospora were recombined in Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural and practical taxonomic option available.
A genetic map of the filamentous fungus Fusarium graminearum (teleomorph: Gibberella zeae) was constructed to both validate and augment the draft whole-genome sequence assembly of strain PH-1. A mapping population was created from a cross between mutants of the sequenced strain (PH-1, NRRL 31084, originally isolated from Michigan) and a field strain from Minnesota (00-676, NRRL 34097). A total of 111 ascospore progeny were analyzed for segregation at 235 loci. Genetic markers consisted of sequence-tagged sites, primarily detected as dCAPS or CAPS (n ¼ 131) and VNTRs (n ¼ 31), in addition to AFLPs (n ¼ 66) and 7 other markers. While most markers exhibited Mendelian inheritance, segregation distortion was observed for 25 predominantly clustered markers. A linkage map was generated using the Kosambi mapping function, using a LOD threshold value of 3.5. Nine linkage groups were detected, covering 1234 cM and anchoring 99.83% of the draft sequence assembly. The nine linkage groups and the 22 anchored scaffolds from the sequence assembly could be assembled into four chromosomes, leaving only five smaller scaffolds (59,630 bp total) of the nuclear DNA unanchored. A chromosome number of four was confirmed by cytological karyotyping. Further analysis of the genetic map data identified variation in recombination rate in different genomic regions that often spanned several hundred kilobases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.