A23187 (6S-[6alpha,8beta,9beta,11alpha]-5-(methylamino) -2-[[3,9,11-trimethyl-8-[1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl]-1,7- dioxaspiro[5.5]undec-2-yl]methyl]-4-benzoxazolecarboxylic acid, calcimycin), an antibiotic Ca2+ ionophore, produces an endothelium-dependent vascular relaxation. In the present study, pharmacological features were functionally characterized of endothelium-dependent relaxant response of guinea-pig aorta to A23187, especially focusing on the possible Ca2+ source and Ca2+ mobilization mechanisms in endothelial cells responsible for the vasorelaxant response to the Ca2+ ionophore. A23187-induced endothelium-dependent relaxation was suppressed profoundly by N(G)-nitro-L-arginine (L-NNA; 3 x 10(-4) M) or calmidazolium (3 x 10(-5) M), suggesting that nitric oxide (NO) produced by the enhanced activation of Ca2+/calmodulin-dependent endothelial NO synthase (eNOS) is largely responsible for the relaxant response of this artery to A23187. In the Ca2+-free solution without EGTA, NO-mediated endothelium-dependent relaxation induced by A23187 was almost abolished, which suggests that Ca2+ entry from extracellular space into endothelial cells plays the key role in the A23187-induced functional vasorelaxation. On the other hand, SK&F96365 (1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole; 5 x 10(-5) M) and Ni2+ (3 x 10(-4) M), both of which inhibit capacitative Ca2+ influx through store-operated Ca2+ channels (SOCCs), attenuated significantly NO-mediated endothelium-dependent relaxation by A23187. Furthermore, A23187-induced endothelium-dependent relaxation was suppressed more strongly than endothelium-independent relaxation induced by SIN-1 (3-morpholino-sydnonimine), an NO donor, when aortic preparation was preconstricted with high KCl instead of agonistic stimulation (prostaglandin F2alpha). These findings suggest that NO-mediated endothelium-dependent relaxant response of guinea-pig aorta to A23187 is preceded by the increase in endothelial cytosolic free Ca2+ concentration ([Ca2+]cyt) due to the enhanced Ca2+ influx from extracellular space. In the enhanced Ca2+ entry leading to the stimulation of eNOS and NO-mediated functional relaxant response of guinea-pig aorta to A23187, activation of SOCCs but not the Ca2+ entry through plasma membrane Ca2+-specific routes made by A23187 seems to play the predominant role. It is most likely that A23187 acts primarily at the Ca2+ store sites in endothelial cells, which subsequently depletes stored Ca2+ to activate SOCCs via unidentified mechanisms.
Thapsigargin, a specific inhibitor of Ca(2+)-pump Ca(2+)-ATPase in the sarcoplasmic/endoplasmic reticulum (SR/ER), produces an endothelium-dependent vascular relaxation. In the present study, pharmacological features of thapsigargin-induced endothelium-dependent relaxation were functionally characterized in the isolated guinea-pig aorta especially focusing on the Ca2+ mobilization mechanisms in endothelial cells. Thapsigargin-induced endothelium-dependent vascular relaxation was markedly suppressed by N(G)-nitro-L-arginine (L-NNA) and calmidazolium, suggesting that the vascular relaxation to thapsigargin is largely attributable to endothelium-derived nitric oxide (NO) produced as a result of the activation of Ca2+, calmodulin-dependent NO synthase (NOS). Removal of Ca2+ from the external solution abolished the endothelium-dependent relaxation of guinea-pig aorta in response to thapsigargin. Thapsigargin-induced endothelium-dependent relaxation was inhibited more strongly compared with the endothelium-independent relaxation to an NO donor, SIN-1 (3-(4-morpholinyl)-sydnonimine), when the artery preparation was preconstricted with a high concentration (80 mM) of KCl instead of agonistic stimulation. Endothelium-dependent relaxation induced by thapsigargin was not affected by diltiazem, a blocker of L-type voltage-gated Ca2+ channels. SK&F96365 (1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1 H-imidazole) and Ni2+, both of which block capacitative Ca(2+) entry, did not show any appreciable inhibitory effects on the endothelium-dependent relaxation to thapsigargin. These findings suggest that in guinea-pig aorta, endothelium-dependent NO-mediated relaxation induced by thapsigargin is preceded by the increase in the cytosolic free Ca2+ concentrations ([Ca2+]cyt) following the depletion of stored Ca2+ in thapsigargin-sensitive store sites in endothelial cells. Although the increase in [Ca2+]cyt responsible for the activation of endothelium NOS leading to thapsigargin-induced vascular relaxation may be ascribed to the capacitative Ca2+ entry from extracellular space, the Ca2+ entry mechanism stimulated with thapsigargin is deficient in sensitivity to SK&F96365 and Ni2+ in the endothelium of guinea-pig aorta.
1 In anaesthetized rats, platelet activating factor (PAF; 1 mg kg 71 ) decreased mean arterial blood pressure by around 60 mmHg (n=18). This depressor response was completely blocked by the PAF antagonist, CV-6209 (1 mg kg 71 ), indicating the role of PAF-speci®c receptor in the response. 2 N G -nitro-L-arginine methyl ester (L-NAME; 50 mg kg 71 ), an NO synthase inhibitor, profoundly elevated systemic blood pressure (n=19), indicating an important role of NO in the basal blood pressure regulation. The depressor response to PAF (1 mg kg 71 ) normalized against that to sodium nitroprusside (SNP) (10 mg kg 71 ) was not substantially di erent between rats treated without and with L-NAME (n=4). In contrast, the depressor e ect of acetylcholine (0.03 ± 1.0 mg kg 71 ) normalized against that of SNP (10 mg kg 71 ) was signi®cantly attenuated by L-NAME (n=5). 3 Charybdotoxin (0.4 mg kg 71 ) plus apamin (0.2 mg kg 71 ) signi®cantly attenuated the depressor response to PAF (1 mg kg 71 ) (n=5) without a ecting the blood pressure change due to SNP (1 mg kg 71 ) (n=3). Charybdotoxin (0.4 mg kg 71 ) (n=4) or apamin (0.2 mg kg 71 ) (n=4) alone did not a ect the PAF-induced depressor response. 4 These ®ndings suggest that EDHF may make a signi®cant contribution to the depressor response to PAF in rats. Although NO plays the determinant role in the basal blood pressure regulation, its contribution to PAF-produced depressor response seems to be less as compared with that to the depressor response to acetylcholine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.