Summary Whole-body positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG) is a diagnostic modality that can noninvasively survey the entire body and sensitively detect various cancers. In this study, we examined the potential application of whole-body PET for cancer screening in asymptomatic individuals. PET was performed in conjunction with conventional examinations including physical examination, laboratory study, ultrasonography and chest computed tomography. Between September 1994 and March 1999, 3165 asymptomatic individuals participated in 5575 screening sessions (2017 men and 1148 women; mean ± SD age, 52.2 ± 10.4 years). Followup periods were no less than 10 months. PET results were compared with the screening outcomes. Within 1 year after screening, malignant tumours were discovered in 67 of the 3165 participants (2.1%). PET findings were true-positive in 36 of the 67 cancers (54%). Most of the 36 patients underwent potentially curative surgery; thus a wide variety of cancers were detected by PET at potentially curable stages. However, PET findings were false-negative in 31 of the 67 patients (46%). 14 of these 31 (45%) were of urological origin. FDG PET imaging has the potential to detect a wide variety of cancers at potentially curable stages. However, PET imaging is not suited to screening test of general population because PET examination involves substantial cost.
Valence band structures and their strain effects in GaN have been investigated by optical spectroscopy for thick GaN films with high optical quality grown by hydride vapor phase epitaxy. Excitons associated with the A, B, and C valence bands are clearly observed in reflectance measurements without modulation techniques. It is found that the exciton energies shift with the film thickness because of the relaxation of the residual strain. From the quantitative analysis of this behavior, we have precisely determined the valence band splitting parameters in GaN as Δ1=10 meV, Δ2=5.5 meV, and Δ3=6.0 meV.
Photoluminescence (PL) spectra and decay dynamics were studied for the spontaneously oxidized porous Si with subsequent various thermal annealing procedures. The PL decay was highly nonexponential and well described by the stretched-exponential function. The PL lifetime was shorter for the higher PL photon energy, but at the same photon energy it decreased by an order of magnitude by the thermal annealing in N2 gas, in parallel with the large PL intensity decrease. This PL quenching upon the annealing is presumably ascribable to both the structural changes and dangling bond formations in porous Si, as suggested by ESR measurements and the annealing experiments in H2 gas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.