Multiple constant multiplication (MCM) operation multiplies an input variable with multiple constants. MCM operations are widely used in many applications such as video processing and compression. In this paper, a method is proposed for efficient implementation of MCM operations using DSP blocks in Xilinx FPGAs. The proposed method reduces number of DSP blocks used for implementing a given MCM operation by manipulating the multiple constants used in this MCM operation. In this paper, a high level synthesis tool implementing the proposed method is also proposed. The proposed tool takes the input variable bit length and multiple constants as inputs, and generates a Verilog RTL code which efficiently implements this MCM operation using DSP blocks. The proposed method and tool are used for one of the most complex video compression algorithms, HEVC 2D DCT. They reduced number of DSP blocks used in the FPGA implementation of HEVC 2D DCT algorithm by 35.8%.
Fractional interpolation is one of the most computationally complex parts of video compression standards. Fractional interpolation in Versatile Video Coding (VVC) standard has much higher computational complexity than fractional interpolation in previous video compression standards. In this paper, a reconfigurable VVC fractional interpolation hardware for motion compensation is designed and implemented using Verilog HDL. The proposed hardware is the first VVC fractional interpolation hardware for motion compensation in the literature. It interpolates necessary fractional pixels for 1/16 pixel accuracy for all prediction unit sizes. The proposed VVC fractional interpolation hardware, in the worst case, can process 66 quad full HD (3840x2160) frames per second. It has up to 77% less power consumption than baseline VVC fractional interpolation hardware.
Abstract-Intra prediction algorithm used in High EfficiencyVideo Coding (HEVC) standard has very high computational complexity. In this paper, an efficient FPGA implementation of HEVC intra prediction is proposed for 4x4, 8x8, 16x16 and 32x32 angular prediction modes. In the proposed FPGA implementation, one intra angular prediction equation is implemented using one DSP block in FPGA. The proposed FPGA implementation, in the worst case, can process 55 Full HD (1920x1080) video frames per second. It has up to 34.66% less energy consumption than the original FPGA implementation of HEVC intra prediction. Therefore, it can be used in portable consumer electronics products that require a real-time HEVC encoder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.