These findings show that Syria constitutes a reservoir for NDM-1-producing bacteria. These results also highlight the need for effective measures to stop the threatening spread of such strains.
BackgroundA. baumannii has emerged as an important nosocomial pathogen with an outstanding ability to acquire multidrug resistant mechanisms. In this study, we investigate the molecular epidemiology and carbapenem resistance mechanisms of A. baumannii in Tripoli, Northern Lebanon.MethodsOne hundred sixteen non-duplicate isolates isolated between 2011 and 2013 in different hospitals in Tripoli, Lebanon from Lebanese patients and wounded Syrian patients during Syrian war were studied. Antibiotic susceptibility testing was determined by agar disc diffusion and Etest. Carbapenemase-encoding genes were investigated by PCR. All isolates were typed by blaOXA-51-like sequence based typing (SBT) and 57 isolates were also analysed by MLST using Pasteur’s scheme followed by eBURST analysis.ResultsOf the 116 isolates, 70 (60 %) showed a carbapenem resistance phenotype. The blaOXA-23 with an upstream insertion of ISAba1 was the major carbapenem resistance mechanism and detected in 65 isolates. Five isolates, including four from wounded Syrian patients and one from a Lebanese patient, were positive for blaNDM-1. blaOXA-51-like SBT revealed the presence of 14 variants, where blaOXA-66 was the most common and present in 73 isolates, followed by blaOXA-69 in 20 isolates. MLST analysis identified 17 sequence types (ST) and showed a concordance with blaOXA-51-like SBT. Each clonal complex (CC) had a specific blaOXA-51-like sequence such as CC2, which harboured blaOXA-66 variant, and CC1 harbouring blaOXA-69 variant. NDM-1 producing isolates belonged to ST85 (4 Syrian isolates) and ST25 (1 Lebanese isolate).ConclusionsOur results showed a successful predominance of international clone 2 with a widespread occurrence of OXA-23 carbapenemase in Lebanese hospitals. These findings emphasise the urgent need of effective measures to control the spread of A. baumannii in this country.
Horizontal transfer of related plasmids has facilitated the spread of the bla(OXA-48) gene into several Enterobacteriaceae species, including virulent E. coli. Their clonal diversity and the presence of faecal carriers in the community suggest an endemic spread of OXA-48.
Abstract. Blastocystis is the most common eukaryotic parasite in the intestinal tract of humans. Because of its potential impact in public health, we acquired the first data concerning the prevalence of this parasite and the frequency of the Blastocystis subtypes (STs) in the Lebanese population. In this study, fecal samples from 220 Lebanese symptomatic and asymptomatic patients were collected and a total of 42 patients (19%) were identified as positive for this parasite by directlight microscopy of smears. Among these, 36 Blastocystis isolates were genotyped using partial small subunit ribosomal RNA gene sequencing. The ST distribution in the present Lebanese population was as follows:
We report here the emergence of VIM-2 and IMP-15 carbapenemases in a series of clinical isolates of carbapenem-resistant Pseudomonas aeruginosa in Lebanon. We also describe the disruption of the oprD gene by either mutations or insertion sequence (IS) elements ISPa1328 and ISPre2 isoform. Our study reemphasizes a rapid dissemination of the VIM-2 carbapenemase-encoding gene in clinical isolates of P. aeruginosa in the Mediterranean basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.