Perovskite surface treatment with additives has been reported to improve charge extraction, stability, and/or surface passivation. In this study, treatment of a 3D perovskite ((FAPbI 3 ) 1−x (MAPbBr 3 ) x ) layer with a thienothiophene-based organic cation (TTMAI), synthesized in this work, is investigated. Detailed analyses reveal that a 2D (n = 1) or quasi-2D layer does not form on the PbI 2rich surface 3D perovskite. TTMAI-treated 3D perovskite solar cells (PSCs) fabricated in this study show improved fill factors, providing an increase in their power conversion efficiencies (PCEs) from 17% to over 20%. It is demonstrated that the enhancement is due to better hole extraction by drift-diffusion simulations. Furthermore, thanks to the hydrophobic nature of the TTMAI, PSC maintains 82% of its initial PCE under 15% humidity for over 380 h (the reference retains 38%). Additionally, semitransparent cells are demonstrated reaching 17.9% PCE with treated 3D perovskite, which is one of the highest reported efficiencies for double cationic 3D perovskites. Moreover, the semitransparent 3D PSC (TTMAI-treated) maintains 87% of its initial efficiency for six weeks (>1000 h) when kept in the dark at room temperature. These results clearly show that this study fills a critical void in perovskite research where highly efficient and stable semitransparent perovskite solar cells are scarce.
Donor-acceptor (DA) type monomers namely 2,5-di(thiophen-2-yl)thiazolo[5,4-d]thiazole (TTzTh) and 2,5-bis(3methylthiophen-2-yl)thiazolo[5,4-d]thiazole (TTzMTh) were synthesized and their electrochemical and optoelectronic properties were investigated in detail. The spectro-electrochemical analysis showed that the alkyl chain substitution results in a shift in the onset of the π-π* transition towards longer wavelengths. Depending on the donor substituents, the polymers exhibited optical band gaps 1.65 and 1.85 eV for PTTzTh and PTTzMTh, respectively. Electrochromic studies revealed that both polymers are p-dopable and multichromic. Moreover, polymer of TTzTh (PTTzTh) has been used for the development of a glucose biosensor. Glucose oxidase (GOx) was anchored on a graphite electrode which was previously modified with a film of the conjugated polymer, PTTzTh by electropolymerization. Such a sensor showed a wide linear range (0.05-2.0 mM), good sensitivity (36.32 µA/(mM•cm 2) and low limit of detection (LOD) (0.075 mM) under formerly optimized conditions. Moreover, the accuracy of the biosensor was successfully tested using two different beverages to detect glucose. Electrochemical characterizations of the polymers and their biosensor application were investigated for the first time in this work.
A new approach was developed using a combination of a conducting polymer; poly(3,4-ethylenedioxythiophene) (PEDOT) with the electrochemically produced polymer of N-ferrocenyl-3-(1H-pyrrol-1-yl)aniline, (PFcPyBz) layer for the enzyme scaffolding resulting in excellent analytical parameters. To organize such a surface, graphite electrode was coated with a PEDOT layer and it was used as a transducer for electrochemical deposition of the polymer of a newly synthesized FcPyBz monomer. Using a PEDOT layer as the working electrode improved localization of the PFcPyBz on the transducer surface while enhancing the biosensor performance. A simple binding of glucose oxidase (GOx) as a test enzyme on this new polymeric platform was achieved using glutaraldehyde (GA) as the cross linker. The low limit of detection and high sensing sensitivity on glucose for the biosensor are estimated as 54 μM and 112.2 μA/mMcm 2 , respectively. The surface characterizations of the modified electrodes were investigated by cyclic voltammetry (CV), attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy and scanning electron microscopy (SEM) techniques. Finally, different kinds of beverages were tested for sensor reliability with high accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.