Key pointsr Recent studies have indicated that antioxidant supplementation may blunt adaptations to exercise, such as mitochondrial biogenesis induced by endurance training. However, studies in humans are sparse and results are conflicting.r Isolated vitamin C and E supplements are widely used, and unravelling the interference of these vitamins in cellular and physiological adaptations to exercise is of interest to those who exercise for health purposes and to athletes.r Our results show that vitamin C and E supplements blunted the endurance training-induced increase of mitochondrial proteins (COX4), which is important for improving muscular endurance.r Training-induced increases inV O 2 max and running performance were not detectably affected by the supplementation.r The present study contributes to understanding of how antioxidants may interfere with adaptations to exercise in humans, and the results indicate that high dosages of vitamins C and E should be used with caution.Abstract In this double-blind, randomised, controlled trial, we investigated the effects of vitamin C and E supplementation on endurance training adaptations in humans. Fifty-four young men and women were randomly allocated to receive either 1000 mg of vitamin C and 235 mg of vitamin E or a placebo daily for 11 weeks. During supplementation, the participants completed an endurance training programme consisting of three to four sessions per week (primarily of running), divided into high-intensity interval sessions [4-6 × 4-6 min; >90% of maximal heart rate (HR max )] and steady state continuous sessions (30-60 min; 70-90% of HR max ). Maximal oxygen uptake (V O 2 max ), submaximal running and a 20 m shuttle run test were assessed and blood samples and muscle biopsies were collected, before and after the intervention. Participants in the vitamin C and E group increased theirV O 2 max (mean ± S.D.: 8 ± 5%) and performance in the 20 m shuttle test (10 ± 11%) to the same degree as those in the placebo group (mean ± S.D.: 8 ± 5% and 14 ± 17%, respectively). However, the mitochondrial marker cytochrome c oxidase subunit IV (COX4) and cytosolic peroxisome proliferator-activated receptor-γ coactivator 1 α (PGC-1α) increased in the m. vastus lateralis in the placebo group by 59 ± 97% and 19 ± 51%, respectively, but not in the vitamin C and E group (COX4: −13 ± 54%; PGC-1α: −13 ± 29%; P ࣘ 0.03, between groups). Furthermore, mRNA levels of CDC42 and mitogen-activated protein kinase 1 (MAPK1) in the trained muscle were lower in the vitamin C and E group than in the placebo group (P ࣘ 0.05). Daily vitamin C and E supplementation attenuated increases in markers of mitochondrial biogenesis following endurance training. However, no clear interactions were detected for improvements inV O 2 max and running performance. Consequently, vitamin C and E supplementation hampered cellular adaptations in the exercised muscles, and although this did not translate to the performance tests applied in this study, we advocate caution when considering antioxidant supplemen...
Key pointsr Although antioxidant supplements are generally believed to give health benefits, recent experiments show that they may adversely affect adaptations to endurance exercise.r This study is the first to investigate the effects of high dosages of vitamins C and E on the cellular and physiological adaptations to strength training in humans.r Here we report that vitamin C and E supplementation interfered with exercise-induced signalling in muscle cells after a session of strength training, by reducing the phosphorylation of p70S6 kinase and mitogen-activated protein kinases p38 and ERK1/2. r The vitamin C and E supplement did not significantly blunt muscle hypertrophy during 10 weeks of training; however, some measurements of muscle strength revealed lower increases in the supplemented group than the placebo group.r Even though the cellular events are not clearly reflected in physiological and performance measurements, this study implies that redox signalling is important for inducing skeletal muscle adaptations to strength training and that vitamin C and E supplements in high dosages should be avoided by healthy, young individuals engaged in strength training.Abstract This study investigated the effects of vitamin C and E supplementation on acute responses and adaptations to strength training. Thirty-two recreationally strength-trained men and women were randomly allocated to receive a vitamin C and E supplement (1000 mg day −1 and 235 mg day −1 , respectively), or a placebo, for 10 weeks. During this period the participants' training involved heavy-load resistance exercise four times per week. Muscle biopsies from m. vastus lateralis were collected, and 1 repetition maximum (1RM) and maximal isometric voluntary contraction force, body composition (dual-energy X-ray absorptiometry), and muscle cross-sectional area (magnetic resonance imaging) were measured before and after the intervention. Furthermore, the cellular responses to a single exercise session were assessed midway in the training period by measurements of muscle protein fractional synthetic rate and phosphorylation of several hypertrophic signalling proteins. Muscle biopsies were obtained from m. vastus lateralis twice before, and 100 and 150 min after, the exercise session (4 × 8RM, leg press and knee-extension). The supplementation did not affect the increase in muscle mass or the acute change in protein synthesis, but it hampered certain strength increases (biceps curl). Moreover, increased phosphorylation of p38 mitogen-activated protein kinase, Extracellular signal-regulated protein kinases 1 and 2 and p70S6 kinase after the exercise session was blunted by vitamin C and E supplementation. The total ubiquitination levels after the exercise session, however, were lower with vitamin C and E than placebo. We concluded that vitamin C and E supplementation interfered with the acute cellular response to heavy-load resistance exercise and demonstrated tentative long-term negative effects on adaptation to strength training.
This file was dowloaded from the institutional repository Brage NIH -brage.bibsys.no/nih Gabbett, T. J., Wiig, H., Spencer, M. (2013
There was no significant reduction in moderate or severe pain in a comparison of water exchange with CO2 insufflation. The secondary outcome of no pain was significantly more frequent in the water exchange group. Clinical trials registry number: NCT01633333.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.