(1) Background: Cystic echinococcosis is a zoonotic helminth disease that causes severe economic losses. The study aimed to assess the prevalence and viability of cystic echinococcosis in examined camels. In addition, assessing the histological, morphological, oxidative, and antioxidant state related to the cystic echinococcosis infection; (2) Methods: The study was performed on 152 slaughtered dromedary camels between March and September 2022 at El-Basatin abattoir in Cairo Governorate, Egypt; (3) Results: The results revealed that the prevalence of hydatidosis was 21.7% in slaughtered camel and the highest infection rate observed in lungs was 87.87%, while it was 9% in livers. Camels’ liver infections were rare, whereas their lung infections were more common. By comparing to non-infected camels, the level of MAD was significantly increased with hydatid cysts infection, while the level of GSH, SOD and CAT was significantly decreased. Histopathological section of camel cyst revealed layered membranes surrounded by a zone of cellular infiltration and an outermost fibrous tissue reaction. In addition, there was evidence of atelectasis, emphysema, hemorrhage, congestion, and fibrosis in the surrounding tissues. Nonetheless, the degeneration and necrosis of hepatocytes and other pathological alterations in liver cyst sections were remarkably comparable to those seen in the lungs. Furthermore, calcification was detected.
Essential oils (EOs) obtained by hydro-distillation from different parts of twigs (EOT), leaves (EOL), and fruits (EOF) of Eucalyptus gunnii Hook. f. were screened for their chemical composition, insecticidal, repellence, and antibacterial properties. Based on GC and GC/MS analysis, 23 constituents were identified across the twigs, leaves, and fruits, with 23, 23, and 21 components, respectively. The primary significant class was oxygenated monoterpenes (82.2–95.5%). The main components were 1,8-cineole (65.6–86.1%), α-terpinyl acetate (2.5–7.6%), o-cymene (3.3–7.5%), and α-terpineol (3.3–3.5%). All three EOs exhibited moderate antibacterial activities. EOL was found to have higher antibacterial activity against all tested strains except Dickeya solani (CFBP 8199), for which EOT showed more potency. Globally, Dickeya solani (CFBP 8199) was the most sensitive (MIC ≤ 2 mg/mL), while the most resistant bacteria were Dickeya dadantii (CFBP 3855) and Pectobacterium carotovorum subsp. carotovorum (CFBP 5387). Fumigant, contact toxicity, and repellent bioassays showed different potential depending on plant extracts, particularly EOT and EOL as moderate repellents and EOT as a medium toxicant.
Zinc molybdate nanoparticles with molybdate are synthesized through green method with different salt precursors using Moringa oleifera leaf extract. Those nanoparticles had structural, vibrational, and morphological properties, which were determined by X-ray diffraction (XRD). The crystalline size of synthesized zinc molybdate was 24.9 nm. Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FE-SEM) clearly showed the attachment of molybdate with ZnO. The synthesized nanomaterial was also characterized through UV-visible spectroscopy which had 4.40 eV band gap energy. Those nanoparticles were also characterized via thermogravimetric analysis (TGA-DTA) and photoluminance spectroscopy (PL). ZnMoO4 had photocatalytic property via methylene blue dye. After 190 minutes, the dye changed to colourless from blue colour. The degradation efficiency was around 92.8%. It also showed their antibacterial effect via Escherichia coli and Staphylococcusaureus bacterial strains. In the presence of light and air, nanoparticles of ZnMoO4 inhibit the growth of cells of E. coli and S. aureus bacterial strains because of ROS (reactive oxygen species) generation. Because of the formation of singlet oxygen (
O
2
∗
−
), hydrogen oxide radical (
−
O
H
∗
), and hydrogen peroxide (H2O2), ZnMoO4 showed photodegradation reaction against aq. solution of methylene blue dye at 6 pH with constant time interval. With time, the activity of ZnMoO4 also decreased because of the generation of a layer of hydrogen oxide (-OH) on nanomaterial surface, which could be washed with ethanol and distilled water. After drying, the catalytic Zinc molybdate nanoparticles could be reused again in the next catalytic reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.