SUMMARYThis study deals with exergoeconomic analysis of a combined heat and power (CHP) system along its main components installed in Eskisehir City of Turkey. Quantitative exergy cost balance for each component and the whole CHP system is considered, while exergy cost generation within the system is determined. The exergetic efficiency of the CHP system is obtained to be 38.33% with 51 475:90 kW electrical power and the maximum exergy consumption between the components of the CHP system is found to be 51 878:82 kW in the combustion chamber. On the other hand, the exergoeconomic analysis results indicate that the unit exergy cost of electrical power produced by the CHP system accounts for 18:51 US$ GW À1 : This study demonstrates that exergoeconomic analysis can provide extra information than exergy analysis, and the results from exergoeconomic analysis provide cost-based information, suggesting potential locations for the CHP system improvement.
SUMMARYThis study deals with the exergetic performance assessment of a combined heat and power (CHP) system installed in Eskisehir city of Turkey. Quantitative exergy balance for each component and the whole CHP system was considered, while exergy consumptions in the system were determined. The performance characteristics of this CHP system were evaluated using exergy analysis method. The exergetic efficiency of the CHP system was accounted for 38.16% with 49 880 kW as electrical products. The exergy consumption occurred in this system amounted to 80 833.67 kW. The ways of improving the exergy efficiency of this system were also analysed. As a result of these, a simple way of increasing the exergy efficiency of the available CHP system was suggested that the valves-I-III and the MPSC could be replaced by a 3500 kWintermediate pressure steam turbine (IPST). If the IPST is installed to the CHP system (called the modified CHP (MCHP) system), the exergetic efficiency of the MCHP system is calculated to be 40.75% with 53 269.53 kW as electrical products. The exergy consumption is found to be 77 444.14 kW in the MCHP system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.