This paper presents an application of genetic algorithms to forecast short-term demand of natural gas in residences. Residential demand is assumed to be a function of time, heating degree-day value, and consumer price index. A genetic algorithm is designed to estimate parameters of a multiple nonlinear regression model which mathematically represents the relationship between natural gas consumption and influential variables. Genetic algorithms have recently received attention as robust stochastic search algorithms to solve various forecasting problems since they have several significant advantages over conventional methods. Without requiring assumptions need to be made about the underlying function or model, genetic algorithms can attain proper solutions by scanning solution space from many different starting point. To show the applicability and superiority of the described approach, it is considered the monthly data of the residential sector which consumes 23% of imported natural gas in Turkey. The results have revealed that genetic algorithms can be used as an alternative solution approach to forecast the future demand of natural gas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.