Abstract-The Routing Protocol for Low Power and Lossy Networks (RPL) has become the standard routing protocol for the Internet of Things (IoT). This paper investigates the use of RPL in dynamic networks and presents an enhanced RPL for different applications with dynamic mobility and diverse network requirements. This implementation of RPL is designed with a new dynamic Objective-Function (D-OF) to improve the Packet Delivery Ratio (PDR), end-to-end delay and energy consumption while maintaining low packet overhead and loop-avoidance. We propose a controlled reverse-trickle timer based on received signal strength identification (RSSI) readings to maintain high responsiveness with minimum overhead and consult the objective function when a movement or an inconsistency is detected to help nodes make an informed decision. Simulations are done using Cooja with random waypoint mobility scenario for healthcare applications considering multi-hop routing. The results show that the proposed dynamic RPL (D-RPL) adapts to the nodes mobility and has a higher PDR, slightly lower end-to-end delay and reasonable energy consumption compared to related existing protocols.
Abstract-IPv6 over low power wireless personal area network (6LoWPAN) is promising to be used in many different IoT applications. Recently, many protocols have been proposed for 6LoWPAN networks such as RPL routing protocol which is developed by the ROLL working group and expected to be the standard routing protocol for 6LoWPAN. Many problems are facing 6LoWPAN as it connects to the Internet such as congestion. In this paper, we propose a new RPL routing metric called Buffer Occupancy which reduces the number of lost packets due to buffer overflow when congestion does occur. Also, a new RPL objective function called Congestion-Aware Objective Function (CA-OF) is presented. The proposed objective function works efficiently when congestion occurs by selecting less congested paths. Simulation results show that CA-OF improves performance in the presence of congestion by an overall average of 37.4% in term of number of lost packets, throughput, packet delivery ratio and energy consumption.
The Internet of Things (IoT) is the next big challenge for the research community where the IPv6 over low power wireless personal area network (6LoWPAN) protocol stack is a key part of the IoT. Recently, the IETF ROLL and 6LoWPAN working groups have developed new IP based protocols for 6LoWPAN networks to alleviate the challenges of connecting low memory, limited processing capability, and constrained power supply sensor nodes to the Internet. In 6LoWPAN networks, heavy network traffic causes congestion which significantly degrades network performance and impacts on quality of service (QoS) aspects such as throughput, latency, energy consumption, reliability, and packet delivery. In this paper, we overview the protocol stack of 6LoWPAN networks and summarize a set of its protocols and standards. Also, we review and compare a number of popular congestion control mechanisms in wireless sensor networks (WSNs) and classify them into traffic control, resource control, and hybrid algorithms based on the congestion control strategy used. We present a comparative review of all existing congestion control approaches in 6LoWPAN networks. This paper highlights and discusses the differences between congestion control mechanisms for WSNs and 6LoWPAN networks as well as explaining the suitability and validity of WSN congestion control schemes for 6LoWPAN networks. Finally, this paper gives some potential directions for designing a novel congestion control protocol, which supports the IoT application requirements, in future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.