Topological phases of matter are classified based on their Hermitian Hamiltonians, whose real-valued dispersions together with orthogonal eigenstates form nontrivial topology. In the recently discovered higher-order topological insulators (TIs), the bulk topology can even exhibit hierarchical features, leading to topological corner states, as demonstrated in many photonic and acoustic artificial materials. Naturally, the intrinsic loss in these artificial materials has been omitted in the topology definition, due to its non-Hermitian nature; in practice, the presence of loss is generally considered harmful to the topological corner states. Here, we report the experimental realization of a higher-order TI in an acoustic crystal, whose nontrivial topology is induced by deliberately introduced losses. With local acoustic measurements, we identify a topological bulk bandgap that is populated with gapped edge states and in-gap corner states, as the hallmark signatures of hierarchical higher-order topology. Our work establishes the non-Hermitian route to higher-order topology, and paves the way to exploring various exotic non-Hermiticity-induced topological phases.
We propose a scheme for generating high-efficient acoustic focusing capable of circumventing obstacles in the propagating medium. This distinct feature that is highly desirable for practical applications is realized by employing two symmetrical Airy beams, and a different type of acoustic lens is designed by using a zero-index medium to provide the required phase profile with extremely high resolution. Furthermore, the scheme has the flexibility of generating tunable focal length. We anticipate our design to open possibilities for the design of acoustic lens and have potential applications in various important scenarios such as biomedical imaging/therapy and non-destructive evaluation.
BackgroundAt present, there is no consensus on how to clinically assess localisation to sound in patients recovering from coma. We here studied auditory localisation using the patient’s own name as compared to a meaningless sound (i.e., ringing bell).MethodsEighty-six post-comatose patients diagnosed with a vegetative state/unresponsive wakefulness syndrome or a minimally conscious state were prospectively included. Localisation of auditory stimulation (i.e., head or eyes orientation toward the sound) was assessed using the patient’s own name as compared to a ringing bell. Statistical analyses used binomial testing with bonferroni correction for multiple comparisons.Results37 (43%) out of the 86 studied patients showed localisation to auditory stimulation. More patients (n=34, 40%) oriented the head or eyes to their own name as compared to sound (n=20, 23%; p<0.001).ConclusionsWhen assessing auditory function in disorders of consciousness, using the patient’s own name is here shown to be more suitable to elicit a response as compared to neutral sound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.