Integrating active and passive manipulation of electromagnetic (EM) waves has significant advantages for the caliber synthesis of microwave and optical integrated devices. In previous schemes, most reported designs focus only on active ways of manipulating self-radiating EM waves, such as antennas and lasers, or passive ways of manipulating external incident EM waves, such as lenses and photonic crystals. Here, we proposed a paradigm that integrates active and passive manipulation of EM waves in a reconfigurable way. As demonstrated, circularly polarized, linearly polarized, and elliptically polarized waves with customized beams are achieved in passive operation by merging Pancharatnam−Berry phases and dynamic phases, while the radiating EM waves with a customized gain are achieved by coupling the coding elements with the radiation structure in the active manipulation. Either active or passive manipulation is determined by the sensed signals and operating state to reduce detectability. Encouragingly, the proposed strategy will excite new sensing and communication opportunities, enabling advanced conceptions for next-generation compact EM devices.
Integrating diversified functionalities within a single aperture is crucial for microwave and optics-integrated devices. To date, research on this issue suffers from restricted bifunctionality, inadequate efficiency, and the limitation of extending to manipulate full-space wave. Here, we propose a general paradigm to achieve full-space multifunctional integration via tailoring the excited and cutoff states of spoof surface plasmon polaritons (SSPPs). A plasmonic meta-atom consisting of judiciously arranged metallic strips is used to excite and cut off the SSPP mode with uniaxially anisotropic characteristics. By shaping the topological structure of the meta-atom, the transmission and reflection phases are arbitrarily controlled at each pixel. Accordingly, the cross-placed meta-atom arrays can be designed to achieve independent phase profiles for x-/y-polarized transmission/reflection waves through dispersion engineering. A metamaterial with quadruple functionalities of backward beams scattering/anomalous reflection and electromagnetic transmission focusing/vortex is designed and fabricated as a proof-of-principle to reveal flexible manipulation. Both simulation and experimental verification are carried out in microwave frequency to demonstrate the feasibility.
Programmable metamaterials are suitable for their dynamic and real-time control capabilities of electromagnetic (EM) functions in radars and antenna communications, but it remains a challenge to achieve dynamic modulation of arbitrary transmission phase with high transmission efficiency. Here, we propose a paradigm to tailor transmission phase shift in real time by switching modes between waveguide and SSPP based on the voltage-driven PIN diodes. Step-like phase shift is achieved by the “ON” and “OFF” states of PIN diodes, while continuous phase regulation is by the characteristic of the nonlinear region between those two states. As validations, three systems with programmable functionalities are implemented, including the multibeam generator, the dual-beam scanner, and the active phased-array antenna. The experimental results are consistent with simulation, which verify the feasibility of the proposed approach. Our work offers an alternative route for transmission full-phase modulation and provides unprecedented potential for high-gain, real-time, and multidimensional EM capabilities in applications such as active phased array radars, self-adaption radomes, smart beam shaping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.