The goal of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign is to develop a predictive understanding of the export, fate, and carbon cycle impacts of global ocean net primary production. To accomplish this goal, observations of export flux pathways, plankton community composition, food web processes, and optical, physical, and biogeochemical (BGC) properties are needed over a range of ecosystem states. Here we introduce the first EXPORTS field deployment to Ocean Station Papa in the Northeast Pacific Ocean during summer of 2018, providing context for other papers in this special collection. The experiment was conducted with two ships: a Process Ship, focused on ecological rates, BGC fluxes, temporal changes in food web, and BGC and optical properties, that followed an instrumented Lagrangian float; and a Survey Ship that sampled BGC and optical properties in spatial patterns around the Process Ship. An array of autonomous underwater assets provided measurements over a range of spatial and temporal scales, and partnering programs and remote sensing observations provided additional observational context. The oceanographic setting was typical of late-summer conditions at Ocean Station Papa: a shallow mixed layer, strong vertical and weak horizontal gradients in hydrographic properties, sluggish sub-inertial currents, elevated macronutrient concentrations and low phytoplankton abundances. Although nutrient concentrations were consistent with previous observations, mixed layer chlorophyll was lower than typically observed, resulting in a deeper euphotic zone. Analyses of surface layer temperature and salinity found three distinct surface water types, allowing for diagnosis of whether observed changes were spatial or temporal. The 2018 EXPORTS field deployment is among the most comprehensive biological pump studies ever conducted. A second deployment to the North Atlantic Ocean occurred in spring 2021, which will be followed by focused work on data synthesis and modeling using the entire EXPORTS data set.
Summary A mix of adaptive strategies enable diatoms to sustain rapid growth in dynamic ocean regions, making diatoms one of the most productive primary producers in the world. We illustrate one such strategy off coastal California that facilitates continued, high, cell division rates despite silicic acid stress. Using a fluorescent dye to measure single-cell diatom silica production rates, silicification (silica per unit area) and growth rates we show diatoms decrease silicification and maintain growth rate when silicon concentration limits silica production rates. While this physiological response to silicon stress was similar across taxa, in situ silicic acid concentration limited silica production rates by varying degrees for taxa within the same community. Despite this variability among taxa, silicon stress did not alter the contribution of specific taxa to total community silica production or to community composition. Maintenance of division rate at the expense of frustule thickness decreases cell density which could affect regional biogeochemical cycles. The reduction in frustule silicification also creates an ecological tradeoff: thinner frustules increase susceptibility to predation but reducing Si quotas maximizes cell abundance for a given pulse of silicic acid, thereby favoring a larger eventual population size which facilitates diatom persistence in habitats with pulsed resource supplies.
The metabolic activity and growth of phytoplankton taxa drives their ecological function and contribution to biogeochemical processes. We present the first quantitative, taxon-resolved silica production rates, growth rates, and silica content estimates for co-occurring diatoms along two cross-shelf transects off the California coast using the fluorescent tracer PDMPO (2-(4-pyridyl)-5-((4-(2-dimethylaminoethylaminocarbamoyl)methoxy)phenyl)oxazole), and confocal microscopy. Taxon contribution to total diatom community silica production was predominantly a function of the surface area of new frustule that each taxon created as opposed to cell abundance or frustule thickness. The influential role of surface area made large diatoms disproportionately important to community silica production over short time scales (<1 d). In some cases, large taxa that comprised only ~15% of numerical cell abundance accounted for over 50% of total community silica production. Over longer time scales relevant to bloom dynamics, the importance of surface area declines and growth rate becomes the dominant influence on contribution to production. The relative importance of surface area and growth rate in relation to silica production was modeled as the time needed for a smaller, faster-growing taxon to create more surface area than a larger, slower-growing taxon. Differences in growth rate between the taxa effected the model outcome more than differences in surface area. Shifts in relative silica production among taxa are time restricted by finite resources that limit the duration of a bloom. These patterns offer clues as to how taxa respond to their environment and the consequences for both species succession and the potential diatom contribution to elemental cycling.
Southern California (USA) has a long history of wildfire, with major burn events generally occurring every 20-40 years according to sedimentary charcoal records (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.